Meeting: 999, Nashville, Tennessee, SS 5A, Special Session on Topological Aspects of Group Theory

999-57-211 Craig R Guilbault* (craigg@uwm.edu), Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53132. Z-compactifications and Generalized Group Boundaries. Preliminary report.

A closed subset A of a compact ANR X is a \mathcal{Z} -set if either of the following equivalent conditions is satisfied:

- There is a homotopy $H: X \times I \to X$ with $H_0 = id_X$ and $H_t(X) \cap A = \emptyset$ for all t > 0.
- For every open set U of $X, U \setminus A \hookrightarrow U$ is a homotopy equivalence.

A \mathbb{Z} -compactification of a noncompact ANR Y is a compactum \widehat{Y} containing Y as an open subset and having the property that $\widehat{Y} - Y$ is a \mathbb{Z} -set in \widehat{Y} . These compactifications play an important role in group theory, where the universal cover of a K(G, 1) is often \mathbb{Z} -compactified by adding a "group boundary". Bestvina has suggested that this approach be used to associate group boundaries to large classes of groups (possibly all) admitting finite K(G, 1)'s. Unfortunately, finding a \mathbb{Z} -compatification of a given topological space is a very delicate problem.

In this talk we will discuss topological issues related to finding \mathcal{Z} -compactifications of various spaces. Recent progress and a variety of open questions will be presented. (Received August 23, 2004)