Meeting: 999, Nashville, Tennessee, SS 9A, Special Session on Inverse Problems

999-34-76 Robert Carlson* (carlson@math.uccs.edu), Department of Mathematics, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80933. A Spectral Transform for the Matrix Hill's Equation.
Inverse spectral problems are considered for the matrix Hill's equation

$$
\begin{gathered}
-Y^{\prime \prime}+Q(x) Y=\lambda Y, \quad Q(x+1)=Q(x) \\
Y(x, \lambda) \in C^{K}, \quad Q(x) \in M_{K}
\end{gathered}
$$

For matrix functions Q with square integrable components, the map from Q to the Floquet matrix of Hill's equation is described with the aid of a Paley-Wiener Hilbert space of entire functions. Local diffeomorphism results and applications to conventional inverse problems will be described. (Received August 09, 2004)

