Meeting: 999, Nashville, Tennessee, SS 12A, Special Session on Biomathematics

999-34-183 Iryna Uleychuk* (mathacadem-Kiev@ukr.net), Ukr,76006,Ivano-Francovsk,st.:24 Serpny,30, 76006 Ivano-Frankovsk, Ukraine. The solution differential systems with delay and with commutative matrixes

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B(t-\tau) \tag{1}
\end{equation*}
$$

$x(t) \in R^{n}, t \geq 0, \tau=$ const.
DEFINITION 1. Delay exponentional of matrix B is matrix function $e_{\tau}^{B t}$ that has a form

$$
e_{\tau}^{B t}= \begin{cases}\theta, & \text { at }- \text { infty }<t<-\tau ; \\ I, & \text { at }-\tau \leq t<0 ; \\ I+B \frac{t}{1!}+B^{2} \frac{(t-\tau)^{2}}{2!}+\ldots+B^{k} \frac{(t-(k-1) \tau)^{k}}{k!}, & \text { at }(k-1) \tau \leq t<k \tau\end{cases}
$$

$k=0,1,2, \ldots$, where θ is zero matrix.
THEOREM 1.Let $A B=B A$ of the system (1) is true.Then the solution Cauchy problem for system (1)has a form $x(t)=e^{A(t-\tau)} e_{\tau}^{B_{1}(t-\tau)} \varphi(-\tau)+\int_{-\tau}^{0} e^{A(t-\tau-s)} e_{\tau}^{B_{1}(t-\tau-s)} e^{A \tau}\left[\varphi^{\prime}(s)-A \varphi(s)\right] d s$

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B(t-\tau)+f(t) \tag{2}
\end{equation*}
$$

THEOREM 3.The solution $\bar{x}(t)$ of nonhomogeneous system (2) with zero initial conditions has form $\bar{x}(t)=\int_{0}^{t} e^{A(t-\tau-s)} e_{\tau}^{B_{1}(t-\tau-s)} f(s) d s, t \geq$ 0.
(Received August 23, 2004)

