Meeting: 999, Nashville, Tennessee, SS 8A, Special Session on Algebraic Geometry and Commutative Algebra

999-14-84 Anthony A. Iarrobino Jr.* (a.iarrobino@neu.edu), Mathematics Department, 567 Lake, Northeastern University, 360 Huntington Avenue, Boston, MA 02115. Consecutive Genera for Irreducible ACM Space Curves. Preliminary report.
Given a degree d, let $g_{0}=g_{0}(d)$ denote the lowest genus of an irreducible ACM space curve of degree d. We give a lower bound for the length t of the longest sequence of adjacent genera $g_{0}, g_{0}+1, \ldots g_{0}+\ell-1$ that occur for degree- d irreducible arithmetically Cohen-Macaulay space curves X. We show that for d large there is an initial consecutive sequence of such genera having length ℓ asymptotic to

$$
\ell \cong c_{1} d^{1.6} \cong c_{2} g_{0}^{16 / 15}
$$

Several authors, Gruson-Peskine, Ellingsrud, Maggione-Ragusa, Geramita-Migliore, have shown that the h-sequence $T=\Delta^{2} H\left(O_{X}\right)$ of X is a length- d decreasing Hilbert function $T=H(A)$ of an Artinian height two algebra A, quotient of O_{X} by generic linear forms. The genus of X is essentially the moment of the graph of T about $i=1$. Thus, the above problem is equivalent to a combinatorial problem of finding a sequence of decreasing T of length d, having consecutive moments. We give several combinatorial approaches to this problem. We obtain the lower bound by studying certain sequences T, that are blocked under an operation of "rolling balls". (Received August 11, 2004)

