Meeting: 999, Nashville, Tennessee, SS 14A, Special Session on Graph Theory and Matroid Theory

999-05-43 Nana Arizumi, Peter Hamburger and Alexandr Kostochka* (kostochk@math.uiuc.edu),
Dept of Mathematics, 1409 W.Green St., Urbana, IL 61801. Additive spanners in
hypercubes. Preliminary report.
A spanning subgraph G of a graph H is a k-additive spanner of H if for each vertices $x, y \in V(H)$, the distance between x and y in G exceeds that in H by at most k. In this talk, we discuss k-additive spanners of the n-dimensional cube, Q^{n}, with few edges or with moderate maximum degree. Let $\Delta(k, n)$ denote the minimum possible maximum degree of a k-additive spanner in Q^{n}. The main result is that for every $k \geq 2$ and $n \geq 21$,

$$
e^{-2 k} \frac{n}{\ln n} \leq \Delta(k, n) \leq 20 \frac{n \ln \ln n}{\ln n}
$$

On the other hand, for each fixed even $k \geq 4$, there exists a k-additive spanner in Q^{n} with average degree at most $2+2^{4-k / 2}+o(1)$. (Received July 22, 2004)

