Meeting: 999, Nashville, Tennessee, SS 14A, Special Session on Graph Theory and Matroid Theory

999-05-238 Xujin Chen and Xingxing Yu* (yu@math.gatech.edu), Atlanta, GA 30332-0160, and Wenan Zang. Bonds in graphs.
Given a connected multigraph G and three nonempty even-sized subsets A, B, C of $V(G)$, when does G have two disjoint connected subgraphs G_{1} and G_{2} such that $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, and $\left|V\left(G_{1}\right) \cap A\right|,\left|V\left(G_{1}\right) \cap B\right|$, and $\left|V\left(G_{1}\right) \cap C\right|$ are all odd? This problem was solved by Chakravarti and Robertson in 1979 for the special case where $|A|=|B|=|C|=2$, which is a variation of a result on disjoint paths proved independently by Seymour, Shiloach, and Thomassen. Recently, we solved this problem completely. Our solution implies a polynomial time algorithm for recognizing such graphs. (Received August 24, 2004)

