Meeting: 999, Nashville, Tennessee, SS 14A, Special Session on Graph Theory and Matroid Theory

999-05-152 Michael Ferrara and Ronald Gould* (rg@mathcs.emory.edu), Department of Math and Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA 30322, and John Schmitt. Potentially K_{s}^{t} - graphic degree sequences.
We consder a variation of the classic Turan type extremal problem. Let π be an n-element graphical sequence and $\sigma(\pi)$ be the sum of the terms in π. Let G be a graph. The problem is to determine the smallest integer m such that any n-term graphical sequence π, having $\sigma(\pi) \geq m$ has a realization containing G as a subgraph. Denote this value by $\sigma(G, n)$. We determine a lower bound for $\sigma\left(K_{s}^{t}, n\right)$, where K_{s}^{t} denotes the complete multipartite graph with t partite sets, each of size s. We further prove equality in the case $s=2$. (Received August 20, 2004)

