Meeting: 1002, Pittsburgh, Pennsylvania, SS 9A, Special Session on Multivariate Hypergeometric Functions: Combinatorial and Algebro-Geometric Aspects

1002-14-75 **Go Okuyama*** (g-okuyama@math.sci.hokudai.ac.jp), Department of Mathmatics, Hokkaido University, 0600810 Sapporo, Japan. *The holonomic rank formula for A-hypergeometric system in* the case where the rank of A is three. Preliminary report.

Given a finite set A of d-dimensional integral vectors which belong to one hyperplane off the origin in $\mathbb{Q}A$ and a parameter vector $\beta \in \mathbb{C}^d$, Gel'fand, Kapranov and Zelevinskii defined a system of differential equations, called an A-hypergeometric system $M_A(\beta)$. They proved that the holonomic rank of $M_A(\beta)$ equals the normalized volume of the convex hull of Aand the origin for any β when the semigroup ring $\mathbb{C}[\mathbb{N}A]$ determined by A is Cohen-Macaulay. Recently, Matusevich, Miller and Walther completely showed that the volume of $M_A(\beta)$ is indepent of β if and only if $\mathbb{C}[\mathbb{N}A]$ is Cohen-Macaulay. However, when we fix a parameter β , it is not well-known how the holonomic rank is described explicitly except when the covex hull of A is simplicial. In this talk, we introduce a homological and generalized notion of A-hypergeometric system, which is called Euler-Koszul complex by Matusevich, Miller and Walther. Moreover, we introduce some combinatorial terms, which may be powerful to investigate the holonomic rank and other D-invariants for this system. Using these notions, we provide the rank formula in the case where the rank of A is three. (Received August 30, 2004)