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THE GREEN-TAO THEOREM ON ARITHMETIC
PROGRESSIONS IN THE PRIMES: A DYNAMICAL

POINT OF VIEW

BRYNA KRA

Abstract. A long standing and almost folkloric conjecture is that
the primes contain arbitrarily long arithmetic progressions. Until
recently, the only progress on this conjecture was due to van der
Corput, who showed in 1939 that there are infinitely many triples of
primes in arithmetic progression. In an amazing fusion of methods
from analytic number theory and ergodic theory, Ben Green and
Terence Tao showed that for any integer k greater than or equal
to 3, there exist infinitely many arithmetic progressions of length
k consisting only of prime numbers. This is an introduction to
some of the ideas in the proof, concentrating on those drawn from
ergodic theory.

1. Background

For hundreds of years, mathematicians have made conjectures about
patterns in the primes: one of the simplest to state is that the primes
contain arbitrarily long arithmetic progressions. It is not clear exactly
when this conjecture was first formalized, but as early as 1770 Lagrange
and Waring studied the problem of how large the common difference
of an arithmetic progression of k primes must be. A natural extension
of this question is to ask if the prime numbers contain arbitrarily long
arithmetic progressions. Support for a positive answer to this comes
from the following simple heuristic. The Prime Number Theorem states
that the number of prime numbers less than the integer N is asymptot-
ically N/ log N . It follows that the density of primes around a positive
large x ∈ R is about 1/ log x. Thus if we model the sequence of primes
by choosing integers at random, with the integer n being chosen with
probability 1/ log n, then there ought to be approximately N2/ logk N
progressions of length k in the prime numbers less than N .

In 1923, Hardy and Littlewood [HL] made a very general conjecture
(the k-tuple conjecture) about patterns and their distribution in the
primes. This conjecture includes as a special case that the number of
k-term arithmetic progressions in the primes bounded by N is asymp-
totically CkN

2/ logk N for a certain explicit value of Ck. There are
1
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numerous related conjectures about the existence of arithmetic pro-
gressions in certain subsets of the integers. For example, the famous
conjecture of Erdös and Turán [ET] states that if A = {a1 < a2 < . . .}
is an infinite sequence of integers with

∑
i 1/ai = ∞, then A contains

arbitrarily long arithmetic progressions. In particular, this would imply
that the primes contain arbitrarily long arithmetic progressions.

The first major progress on arithmetic progressions in the primes was
made by van der Corput [Vdc], who proved in 1939 that the primes
contain infinitely many arithmetic progressions of length 3. The next
progress was not until 1981, when Heath-Brown [H] showed that there
are infinitely many arithmetic progressions of length 4 consisting of
three primes and an almost prime, meaning either a prime or a product
of two primes. In a slightly different direction are the elegant results of
Balog ([Ba1], [Ba2]) on patterns in the primes. For example, he shows
that for any positive integer k, there exist infinitely many k-tuples of
distinct primes p1 < p2 < . . . < pk such that (pi + pj)/2 is prime for all
i, j ∈ {1, . . . , k}. For k = 2 this implies, in particular, that the primes
contain infinitely many arithmetic progressions of length 3.

Computational mathematicians have also given the problem of find-
ing long arithmetic progressions in the primes attention. In 1995,
Moran, Pritchard and Thyssen [MPT] found a progression of length
22 in the primes and this record held for almost 10 years. In 2004,
Frind, Jobling and Underwood [FJU] found a progression of length 23,
starting with the prime 56211383760397 and with common difference
44546738095860.

In 2004, Ben Green and Terence Tao announced a major break-
through, with a proof of the general case:

Theorem 1.1 (Green and Tao [GT1]). For every integer k ≥ 1, the
prime numbers contain an arithmetic progression of length k.

We note that they [GT2] also extract a bound on how far out in the
primes one must go in order to guarantee finding an arithmetic progres-
sion of length k, showing that there is a k-term arithmetic progression
of primes all of whose entries are bounded by

2222
22

22
(100k)

.

This bound is considered far from optimal; standard heuristics in num-
ber theory, plus a little calculation, leads to the conjecture that there is
an arithmetic progression of length k in the primes all of whose entries
are bounded by k! + 7.
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Green and Tao actually obtain the stronger statement that it suffices
to have positive density relative to the primes:

Theorem 1.2 (Green and Tao [GT1]). If A is a subset of prime num-
bers with

lim sup
N→∞

1

π(N)
|A ∩ [1, . . . , N ]| > 0 ,

where π(N) is the number of primes less than N , then for every integer
k ≥ 1, A contains an arithmetic progression of length k.

For k = 3, this was proved by Green [G].
The theorem of Green and Tao is a beautiful result answering an old

conjecture that has attracted much work. Perhaps even more impres-
sive is the fusion of methods and results from number theory, ergodic
theory, harmonic analysis, discrete geometry, and combinatorics used
in its proof. The starting point for Green and Tao’s proof is the cele-
brated theorem of Szemerédi [S]: a set of integers with positive upper
density1 contains arbitrarily long arithmetic progressions. One of the
main ideas is to generalize this, showing that a dense subset of a suf-
ficiently pseudorandom collection (see Section 7 for the precise defini-
tion) of the integers contains arbitrarily long arithmetic progressions.
There are three major ingredients in the proof. The first is Szemerédi’s
Theorem itself. Since the primes do not have positive upper density,
Szemerédi’s Theorem can not be directly applied and the second major
ingredient in Green and Tao’s proof is a certain transference principle
that allows one to use Szemerédi’s Theorem in a more general setting.
The third ingredient is an application of recent work of Goldston and
Yildirim [GY] on the distribution of the prime numbers, showing that
this generalized Szemerédi Theorem applies to the primes.

It is impossible to give a complete proof of their theorem in this
limited space, nor even to do justice to the main ideas. Our goal is to
outline the main ingredients and focus on the relation between their
work and recent parallel advances in ergodic theory. The interaction
between combinatorial number theory and ergodic theory began with
Furstenberg’s proof of Szemerédi’s Theorem (see Section 3) and has
led to many new results. Until the present, this interaction has mainly
taken the form of using ergodic theory to prove statements in com-
binatorial number theory, such as Szemerédi’s Theorem, its general-
izations (including a multidimensional version [FK1] and a polynomial

1The upper density d∗(A) of a subset A of the integers is defined to be

d∗(A) := lim sup
N→∞

|A ∩ [1, . . . , N ]|/N .
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version [BL]), or the density Hales-Jewett Theorem [FK2]. Green and
Tao’s work opens a new chapter in this interaction, with ergodic the-
oretic proof techniques being adapted for use in a number theoretic
setting.

Acknowledgments: I appreciate the many helpful comments I re-
ceived while preparing this manuscript, including those from Nikos
Frantzikinakis, Bernard Host, Terence Tao, and Mate Wierdl, and es-
pecially those from Andrew Granville.

2. Szemerédi’s Theorem

Substituting the set of all integers for the set of primes in Theo-
rem 1.2, one obtains Szemerédi’s Theorem. We state an equivalent
finite version of this theorem:

Theorem 2.1 (Finite Szemerédi [S]). Let 0 < δ ≤ 1 be a real number
and let k ≥ 1 be an integer. Then there exists N0(δ, k) such that if
N > N0(δ, k) and A ⊂ [1, . . . , N ] with |A| ≥ δN , then A contains an
arithmetic progression of length k.

It is clear that this version implies the first version of Szemerédi’s
Theorem, and an easy argument gives the converse implication.

Szemerédi’s [S] original proof in 1975 was combinatorial in nature.
Shortly thereafter, Furstenberg developed the surprising relation be-
tween combinatorics and ergodic theory, proving Szemerédi’s Theorem
via a multiple recurrence theorem (see Section 3). More recently, Gow-
ers [Go] gave a new proof of Szemerédi’s Theorem using harmonic anal-
ysis, vastly improving the known bounds in the finite version. Although
the various proofs (Szemerédi’s, Furstenberg’s, or Gowers’) seem to use
very different methods, they all have several features in common. In
each, a key idea is the dichotomy in the underlying space (whether it
be a subset of the integers, a measure space, or the finite group Z/NZ)
between randomness and structure. One then has to analyze the struc-
tured part of the space to understand the intersection of a set with
itself along arithmetic progressions. We start by further exploring the
connection with ergodic theory.

3. Szemerédi’s Theorem and ergodic theory

Furstenberg proved the multiple ergodic theorem:

Theorem 3.1 (Multiple Recurrence [F]). Let (X,X , µ, T ) be a mea-
sure preserving probability system2 and let k ≥ 1 be an integer. Then

2By a measure preserving probability system, we mean a quadruple (X,X , µ, T ),
where X is a set, X denotes a σ-algebra on X, µ is a probability measure on (X,X )
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for any set E ∈ X with µ(E) > 0,

(3.1) lim inf
N→∞

1

N

N−1∑
n=0

µ
(
E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE

)
> 0.

An obvious corollary to Theorem 3.1 is that under the same hypothe-
ses, there exists an integer n ≥ 1 such that

µ
(
E ∩ T−nE ∩ T−2nE ∩ . . . ∩ T−(k−1)nE

)
> 0 .

Furstenberg then made the beautiful connection to combinatorics, show-
ing that regularity properties of integers with positive upper density
correspond to multiple recurrence results:

Theorem 3.2 (Correspondence Principle [F]). Assume that A is
a subset of integers with positive upper density. Then there exist a
measure preserving probability system (X,X , µ, T ) and a measurable
set E ∈ X with µ(E) = d∗(A) such that for all integers k ≥ 1 and all
integers m0, . . . , mk−1 ≥ 1,

d∗(A∩ (A+m0)∩ . . .∩ (A+mk−1)
) ≥ µ

(
E∩T−m0E∩ . . .∩T−mk−1E

)
.

Taking m1 = n,m2 = 2n, . . . , mk1 = (k − 1)n, Szemerédi’s Theorem
follows from the corollary to the Multiple Recurrence Theorem.

Furstenberg’s proof relies on a compactness argument, making it dif-
ficult to extract any explicit bounds in the finite version of Szemerédi’s
Theorem. On the other hand, Theorem 3.1 and its proof gave rise to a
new area in ergodic theory, called “Ergodic Ramsey Theory”, leading to
many other results in combinatorics, such as the multidimensional Sze-
merédi Theorem [FK1] and the polynomial Szemerédi Theorem [BL].
Some of these generalizations are still not attainable by other methods.
More recent developments in ergodic Ramsey Theory closely parallel
ideas in Green and Tao’s work; we return to this in Section 5.

To prove Theorem 3.1, Furstenberg shows that in any measure pre-
serving system, one of two distinct phenomena occurs to make the
measure of this intersection positive. The first is weak mixing,3 when

and T : X → X is a measurable map such that µ(A) = µ(T−1A) for all A ∈ X .
Usually, we assume that X is a metrizable compact set and X is its Borel σ-algebra
(the σ-algebra generated by the open sets). We always denote the σ-algebra by the
calligraphic version of the letter used for the space and when there is no ambiguity,
we omit explicit mention of the σ-algebra and instead write (X, µ, T ).

3The system (X,X , µ, T ) is weak mixing if for all A,B ∈ X ,

lim
N→∞

1
N

N−1∑
n=0

∣∣µ (
T−nA ∩ B

) − µ(A)µ(B)
∣∣ = 0 .
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for any set E, µ(E ∩ T−nE) is approximately µ(E)2 for most choices
of the integer n. Then it can be shown that µ(E ∩T−nE ∩T−2nE ∩ . . .
∩T−(k−1)nE) is approximately µ(E)k for most choices of n, which is
clearly positive for a set E of positive measure. The opposite situation
is rigidity, when for appropriately chosen n, T n is very close to the
identity. Then T jnE is very close to E and µ(E ∩ T−nE ∩ T−2nE ∩ . . .
∩T−(k−1)nE) is very close to µ(E), again giving a positive intersection
for a set E of positive measure. One then has to show that the aver-
age along arithmetic progressions for any function can be decomposed
into a piece which has randomness of the first case (a generalization
of weak mixing) and one which has the structure of the second case
(a generalization of rigidity). One of the difficulties lies in proving a
structure theorem for the latter situation, showing that this portion of
the system can be reduced to a finite series of compact extensions of a
one point system (a Furstenberg tower) and then proving a recurrence
statement for this tower.

4. Gowers norms in combinatorics

In his proof of Szemerédi’s Theorem, Gowers [Go] shows that aver-
ages along arithmetic progressions are controlled by certain norms, now
known as Gowers (uniformity) norms. We start with a description of
this key idea, explaining it in the combinatorial setup in this section
and in the ergodic version in the next section. To define these norms,
we introduce some notation.

For a positive integer N , let ZN := Z/NZ. If f : ZN → C is a
function, let E (f(x)|x ∈ ZN) denote the average value of f on ZN :

E (f(x)|x ∈ ZN) =
1

N

∑
x∈ZN

f(x) .

We also use a higher dimensional version of the expectation. For ex-
ample, by E(f(x, y)|x, y ∈ ZN), we mean iteration of the one variable
expectation:

E
(
E(f(x, y)|x ∈ ZN)|y ∈ ZN

)
.

In this terminology, Szemerédi’s Theorem becomes:

Theorem 4.1 (Reformulated Szemerédi). Let 0 < δ ≤ 1 be a real
number and let k ≥ 2 be an integer. If N is sufficiently large and
f : ZN → R is a function with 0 ≤ f(x) ≤ 1 for all x ∈ ZN and
E (f(x)|x ∈ ZN) ≥ δ, then

(4.1) E
(
f(x)f(x + r) . . . f(x + (k − 1)r)|x, r ∈ ZN

) ≥ c(k, δ)
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for some constant c(k, δ) > 0 which does not depend either on f or on
N .

At first glance, this appears to be a stronger version than the original
statement of Szemerédi’s Theorem, showing not only the existence of a
single arithmetic progression but of some positive multiple of N2 pro-
gressions. However, using some combinatorial trickery one can quickly
show that the two versions are equivalent.

We now define the norms that control the averages along arithmetic
progressions. A variation on the classic van der Corput difference the-
orem motivates the definition and since we are studying progressions
in the context of ZN , it is particularly easy to state:

Lemma 4.2 (van der Corput Lemma for ZN). If f : ZN → C is
a function, then

|E(f(x)|x ∈ ZN)|2 = E(f(x)f(x + h)|x, h ∈ ZN) .

Since each of these expectations is a finite sum, the proof of the
lemma is immediate by expanding both sides and using a simple change
of variable.

The dth-Gowers (uniformity) norm ‖f‖Ud of a function f : ZN → C

is defined inductively. Set

‖f‖U1 := |E(f(x)|x ∈ ZN)|

For d ≥ 2, we mimic successive uses of the van der Corput Lemma and
define

(4.2) ‖f‖Ud := E

(∥∥ffh

∥∥2d−1

Ud−1 |h ∈ ZN

)1/2d

,

where fh(x) = f(x+h). By definition, ‖f‖Ud is non-negative for d = 1
and therefore also for all higher d. Furthermore, Equation (4.2) shows
that the dth-Gowers norm is shift invariant, meaning that ‖f(x)‖Ud =
‖f(x + h)‖Ud for any h ∈ ZN .

It follows immediately from the definitions and a change of variable
that

(4.3) ‖f‖U1 =
(
E(f(x)f(x + h)|x, h ∈ ZN)

)1/2

.
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Thus for d = 1, ‖f‖Ud is only a seminorm.4 Using the Fourier expansion
of f and computing, we have that

‖f‖U2 =

( ∑
ξ∈ZN

∣∣∣f̂(ξ)
∣∣∣4

)1/4

,

where f̂ denotes the Fourier transform of f . It follows that for d = 2,
‖f‖Ud is nondegenerate and so it is a norm.

To see that ‖f‖Ud is a norm for d ≥ 2, we give an equivalent char-
acterization of the dth-Gowers norm as a certain average over a d-
dimensional cube. This also allows us to express the definition of the
norm in a closed form. We first need to introduce some more notation.

We consider {0, 1}d as the set of vertices of the d-dimensional Eu-
clidean cube, meaning it consists of points ω = (ω1, . . . , ωd) with
ωj ∈ {0, 1} for j = 1, . . . , d. For ω ∈ {0, 1}d, define |ω| = ω1 + . . . + ωd

and if ω ∈ {0, 1}d and h = (h1, . . . , hd) ∈ Z
d
N , we define ω · h :=

ω1h1 + . . . + ωdhd. Then if f : ZN → C is a complex valued function,
it follows from inductively applying the definition in (4.2) that

(4.4) ‖f‖Ud := E


 ∏

ω∈{0,1}d

C |ω|f(x + ω · h)|x ∈ ZN ,h ∈ Z
d
N




1/2d

,

where C is the conjugation operator Cf(x) := f(x). This presentation
allows one to view the Gowers norms as an average over the cube
{0, 1}d.

By repeated applications of the Cauchy-Schwarz Inequality and the
definitions of the norms, one obtains the Gowers Cauchy-Schwarz In-
equality for 2d functions fω : ZN → C:
(4.5)∣∣∣∣∣∣E


 ∏

ω∈{0,1}d

C |ω|fω(x + ω · h)|x ∈ ZN ,h ∈ Z
d
N




∣∣∣∣∣∣ ≤
∏

ω∈{0,1}d

‖fω‖Ud .

From this, one can show that ‖f‖Ud is subadditive and so is a seminorm.
Furthermore, using the Gowers Cauchy-Schwarz Inequality, one has the
chain of inequalities

(4.6) ‖f‖U1 ≤ ‖f‖U2 ≤ . . . ≤ ‖f‖L∞ .

4A seminorm on a vector space V is a non-negative real valued function such
that ‖f + g‖ ≤ ‖f‖ + ‖g‖ and ‖cf‖ = |c| · ‖f‖ for all f, g ∈ V and all scalars c.
Thus unlike a norm, one may have ‖f‖ = 0 for some f 	= 0.



THE GREEN-TAO THEOREM 9

Since ‖f‖Ud is nondegenerate for d = 2, Inequality (4.6) implies that
‖f‖Ud is nondegenerate for all higher d, giving that the dth- Gowers
norm is actually a norm for d ≥ 2.

Finally we rewrite the Gowers norms in notation that is closer in
spirit to the ergodic theoretic setup. Consider ZN endowed with the
transformation T (x) = x + 1 mod N and the uniform measure m
assigning weight 1/N to each element of ZN . Then the definition of
Equation (4.4) becomes:
(4.7)

‖f‖Ud =


∫ ∏

ω∈{0,1}d

C |ω|f(T ω·hx) dm(x)dm(h1) . . . dm(hd)




1/2d

.

These norms are used by Gowers (as well as by Host and Kra [HK1]
and more recently by Tao [T] and by Green and Tao [GT1]) to control
the average along arithmetic progressions, which is the quantity in
Equation (4.1). This can be viewed as a generalized version of the
von Neumann Ergodic Theorem, which states that the average of a
bounded function on a finite measure space converges in mean to its
integral. We formalize the statement about this control, as stated by
Tao [T]:

Theorem 4.3 (Generalized von Neumann Theorem [T]). Let k ≥
2 be an integer, let N be a prime number and assume that f0, . . . , fk−1 :
ZN → C are functions with |f0|, . . . , |fk−1| ≤ 1. Then∣∣E(

f0(x)f1(x + n) . . . fk−1(x + (k − 1)n)|x, n ∈ ZN

)∣∣
≤ min

0≤j≤k−1
‖fj‖Uk−1 .

The proof of this theorem is an induction argument, using the Cauchy-
Schwarz Inequality and the van der Corput Lemma for ZN (Lemma 4.2).

To prove Szemerédi’s Theorem, Gowers [Go] studies the indicator
function 1A of a set A ⊂ ZN . As in Furstenberg’s proof, there are two
opposite cases. If ‖1A − |A|/N‖Uk−1 is small, then one can substitute
a constant function for 1A and get this average is large. If ‖1A −
|A|/N‖Uk−1 is large, then he shows that the restriction of 1A to some
large subset of ZN has many arithmetic properties and so the average
in Equation (4.1) is once again large. The difficulty in this proof lies in
showing that a usable version of the dichotomy between large and small
always occurs. Proving that the second case has the needed structure
is easier, since here the structure is a nested sequence of arithmetic
progressions.
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5. Gowers norms in ergodic theory

Furstenberg’s proof of Theorem 3.1 left open the question of the
existence of the limit in the left hand side of Equation (3.1). Host and
Kra [HK1] show that this lim inf is actually a limit:

Theorem 5.1 (Multiple Convergence [HK1]). Assume that (X,X , µ,
T ) is a measure preserving probability system, k ≥ 1 is an integer, and
f1, f2, . . . , fk are bounded functions on X. Then the averages

(5.1)
1

N

N−1∑
n=0

f1(T
nx)f2(T

2nx) . . . fk(T
knx)

converge in L2(µ) as N → ∞.

The first step in proving this theorem is showing that instead of
taking the average in the system (X,X , µ, T ), it suffices to consider
the average over some (ostensibly simpler) system (Y,Y , ν, S). This
amounts to proving a generalized von Neumann Theorem, as in Gowers’
proof. This idea is implicit in Furstenberg’s [F] proof of Szemerédi’s
Theorem and made explicit in the proof of Theorem 5.1.

In [HK1], we introduced seminorms that generalize the Gowers norms.
We consider a general probability measure preserving space (X,X , µ)
with an invertible measurable, measure preserving transformation T :
X → X on it. For a function f ∈ L∞(µ), we define (compare with
Equation (4.2))

‖f‖U1 :=

∣∣∣∣
∫

f(x) dµ(x)

∣∣∣∣
and inductively we define the dth-seminorm by

(5.2) ‖f‖2d

Ud := lim
N→∞

1

N

N−1∑
n=0

‖fT nf‖2d−1

Ud−1 .

To recover the Gowers norms, we take the space ZN with the trans-
formation x 
→ x + 1 mod N and the uniform measure assigning each
element of ZN weight 1/N .

Once again, there is an alternate presentation, analogous to that
of Equation (4.7), as the integral with respect to a certain measure
and this second presentation makes many properties of ‖f‖Ud more
transparent. We need some notation to define this measure. (A reader
not interested in the technical definition of this measure can omit this
alternate presentation.)

Assume that (X,X , µ) is a probability space. If f ∈ L1(µ) and
Y ⊂ X is a sub-σ-algebra, then the conditional expectation E(f |Y) of
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f on Y is the Y-measurable function such that∫
A

f dµ =

∫
A

E(f |Y) dµ

for all A ∈ Y .
Fix an ergodic5 measure preserving probability system (X,X , µ, T ).

Define X [d] = X2d
and write points of X [d] as x = (xω : ω ∈ {0, 1}d).

Let T [d] = T × T × . . . × T taken 2d times. There is a natural identi-
fication between X [d+1] and X [d] × X [d], with a point x ∈ X [d+1] being
identified with (x′,x′′) ∈ X [d] × X [d], where x′

ω = xω,0 and x′′
ω = xω,1

for each ω ∈ {0, 1}d.
For each integer d ≥ 0, we inductively define a T [d]-invariant measure

µ[d] on X [d]. Define µ[0] := µ. Assume that µ[d] is defined for some
d ≥ 0. Let I [d] denote the T [d]-invariant σ-algebra of (X [d], µ[d], T [d]).
Using the natural identification of X [d+1] with X [d] × X [d], define the
measure preserving (probability) system (X [d+1], µ[d+1], T [d+1]) to be the
relatively independent joining of (X [d], µ[d], T [d]) with itself over I [d]:
this means that the measure µ[d+1] is the measure such that for all
bounded functions F ′ and F ′′ on X [d], we have∫

X[d+1]

F ′(x′)F ′′(x′′) dµ[d+1](x) =

∫
X[d]

E(F ′|I [d])E(F ′′|I [d]) dµ[d] .

The measure µ[d+1] is invariant under T [d+1] and the two natural
projections on X [d] are each µ[d]. Using induction, this gives that each
of the 2d natural projections of µ[d] on X is equal to µ. Thus for a
bounded function f on X, the integral∫

X[d]

∏
ω∈{0,1}d

C |ω|f(xω) dµ[d](x)

is real and nonnegative, where as before Cf(x) := f(x). An alternate
definition of the seminorms is:

(5.3) ‖f‖Ud =


∫

X[d]

∏
ω∈{0,1}d

C |ω|f(xω) dµ[d](x)




1/2d

.

To show that these are seminorms, one proceeds in the same manner as
in the combinatorial setup, deriving a version of the Cauchy-Schwarz

5The system (X,X , µ, T ) is ergodic if the only sets A ∈ X with µ(T−1A) = µ(A)
have measure 0 or 1. Every system can be decomposed as an integral of ergodic
systems and so we can assume that the system being studied in Theorem 5.1 is
ergodic.
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Inequality (analogous to Equation (4.5)) and using it to show subad-
ditivity. Positivity follows immediately from definition (5.2). From
the definition of these measures and the Ergodic Theorem, we obtain
that this second definition is equivalent to the first definition given in
Equation (5.2).

The definition of Equation (5.3) can once again be viewed as an aver-
age over the cube {0, 1}d. A convergence theorem for general averages
along cubes is also proved in [HK1].

The first step in proving Theorem 5.1 is showing that the aver-
ages along arithmetic progressions are once again controlled by the
d-seminorms, meaning an analog of Theorem 4.3:

Theorem 5.2 (Generalized von Neumann, revisited [HK1]). As-
sume that (X,X , µ, T ) is a measure preserving probability system. Let
k ≥ 2 be an integer and assume that f1, . . . , fk are bounded functions
on X with ‖f1‖∞, . . . ‖fk‖ ≤ 1. Then

lim sup
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

f1(T
nx)f2(T

2nx) . . . fk(T
knx)

∥∥∥∥∥
2

≤ min
1≤j≤k

(j‖fj‖Uk) .

The added factor of j which appears on the right hand side of this
bound and not in Theorem 4.3 is due to the change in underlying
space. In Theorem 4.3, we assumed that N is prime; in this case, for
any integer j that is not a multiple of N , the map n 
→ jn is onto in ZN ,
which is not the case in Z. As for the earlier Generalized von Neumann
Theorem, Theorem 5.2 is proved using induction, the Cauchy-Schwarz
Inequality and a van der Corput lemma. This time we need a Hilbert
space variation of this lemma:

Lemma 5.3 (van der Corput Lemma, revisited [B]). Assume that
H is a Hilbert space with inner product 〈 , 〉 and that ξn, n ≥ 0 is a
sequence in H with ‖ξn‖ ≤ 1 for all n. Then

lim sup
N→∞

∥∥∥∥∥ 1

N

N−1∑
n=0

ξn

∥∥∥∥∥
2

≤ lim sup
H→∞

1

H

H−1∑
h=0

lim sup
N→∞

∣∣∣∣∣ 1

N

N−1∑
n=0

〈ξn+h, ξn〉
∣∣∣∣∣ .

Theorem 5.2 allows one to consider an average along arithmetic pro-
gressions on an appropriate factor, rather than the whole space. We
make this notion more precise.

For a measure preserving system (X,X , µ, T ), the word factor is used
with two different but equivalent meanings. First, it is a T -invariant
σ-algebra of X . (Strictly speaking, this is a sub-σ-algebra, but through-
out we omit the use of the word “sub”.) Secondly, if (Y,Y , ν, S) is a
measure preserving system, a map π : X → Y is a factor map if π maps
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µ to ν and S ◦ π = π ◦ T . Then Y is said to be a factor of X and the
two definitions coincide up to the identification of Y with π−1(Y). For
f ∈ L1(µ), we view E(f |Y) as a function on X and let E(f |Y ) denote
the function on Y defined by E(f |Y ) ◦ π = E(f |Y). It is characterized
by ∫

Y

E(f |Y )(y) · g(y) dν(y) =

∫
X

f(x) · g(π(x)) dµ(x)

for all g ∈ L∞(µ).
The seminorms are used to define factors of the system (X,X , µ, T ).

One presentation of these factors is by defining their orthogonal com-
plements: for d ≥ 1, define Zd−1 to be the σ-algebra of X such that for
f ∈ L∞(µ):

‖f‖Ud = 0 if and only if E(f |Zd−1) = 0 .

Thus a bounded function f is measurable with respect to Zd−1 if and
only if

∫
fgdµ = 0 for all functions g ∈ L∞(µ) with ‖g‖Ud−1 = 0. This

motivates an equivalent definition of the factors Zd with respect to a
dual norm. Namely, defining the dual norm ‖f‖(Ud)∗ by

(5.4) ‖f‖(Ud)∗ := sup
g∈L∞(µ)

{∫
X

fg dµ : ‖g‖Ud ≤ 1

}
,

we have that

‖f‖(Ud)∗ = 0 if and only if E(f |Zd) = 0 .

Letting Zj denote the factor associated to the σ-algebra Zj, we have
that Z0 is the trivial factor and Z1 is the Kronecker factor, meaning the
σ-algebra which is spanned by the eigenfunctions of T . Furthermore,
the sequence of factors is increasing (compare with Equation (4.6)):

Z0 ← Z1 ← Z2 ← . . . ← X

and if T is weakly mixing, then Zd is the trivial factor for all d.
Theorem 5.2 says that the factor Zd−1 is a characteristic factor for

the average of Equation (5.1), meaning that the limit behavior of the
averages in L2(µ) remains unchanged when each function is replaced
by its conditional expectation on this factor. Thus it suffices to prove
convergence when one of the factors Zd is substituted for the original
system. For a progression of length k, this amounts to decomposing a
bounded function f = g +h with g = f −E(f |Zk−1). The function g is
the uniform component and has zero k−1 seminorm and so contributes
zero to the average along arithmetic progressions. The second term h
is the anti-uniform component and belongs to the algebra of functions
measurable with respect to the factor Zk−1 and must be analyzed via a
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structure theorem for the characteristic factors. This decomposition of
an arbitrary bounded function into uniform and anti-uniform compo-
nents is unique. In the combinatorial setting, a similar decomposition
(see Section 6) can only be carried out approximately. Ergodic theory
is more precise than combinatorics in describing the second component
of this decomposition.

When the description of the factor given by the structure theorem is
“simple”, one has a better chance of proving convergence in this factor.
For the given decomposition, the description of the characteristic factor
is as an inverse limit of nilsystems, meaning that it can be approximated
arbitrarily well by a rotation on a homogeneous space of a nilpotent
Lie group.6

6. Quantitative ergodic theory

Tao [T] gave a new proof of Szemerédi’s Theorem, along the lines
of Furstenberg’s original proof, but proving it in the finite system ZN

rather than for an arbitrary measure space. This allows him to ex-
tract explicit bounds for N0(δ, k) in the finite version (Theorem 2.1),
although the bounds are nowhere near as good as those obtained by
Gowers [Go].

Once again, a generalized von Neumann Theorem (Theorems 4.3
and 5.2) is used to start the proof. Then, as in the ergodic setup,
an arbitrary bounded function f on ZN is decomposed into pieces,
each of which can be analyzed. This time the decomposition is into a
term with small Gowers norm and a structured component, with the
wrinkle that one also has to deal with a small error term. The first
term corresponds to a uniform component f −E(f |Z) for a well chosen
σ-algebra Z (similar to the use of a characteristic factor in the ergodic
setup) which has small Gowers norm and makes a small contribution
to the average in Equation (4.1). Since the space being used is ZN ,
the σ-algebra Z is really a finite partition of ZN . The second term
is the conditional expectation of f relative to Z and this component
is analyzed using a form of recurrence similar to that needed for a
Furstenberg tower.

6If G is a k-step nilpotent Lie group and Γ is a discrete cocompact subgroup,
then a ∈ G naturally acts on G/Γ by left translation by Ta(xΓ) = (ax)Γ. The
Haar measure µ is the unique Borel probability measure on G/Γ that is invariant
under this action of G by left translations. For a fixed element a ∈ G, the system
(G/Γ,G/Γ, Ta, µ) is a k-step nilsystem. The structure theorem in [HK1] states that
the characteristic factor Zk−1 for an average of arithmetic progressions of length k
is an inverse limit of such (k − 1)-step nilsystems.
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The second component of the decomposition, called the anti-uniform
functions by Tao, is essentially dual to the uniform component where
the anti-uniform (dual) norm ‖g‖(Ud−1)∗ is defined by (compare with
Equation (5.4))

‖g‖(Ud−1)∗ := sup
f : ZN→C

{|〈f, g〉| : ‖f‖Ud−1 ≤ 1} .

The contribution of this term to the average is bounded from below by
van der Waerden’s Theorem,7 with the idea being that these functions
lie in a sufficiently compact space so that a finite coloring argument can
be used. Applying this idea to a function with positive expectation,
the average along arithmetic progressions is positive.

This proof follows Furstenberg’s proof closely. One advantage is the
elimination of the compactness argument, leading to explicit bounds
on the size of the set needed to guarantee the existence of a progression
of length k. The structure theorem does not need an understanding
of the precise structure of the chosen σ-algebra, which corresponds
to the tower of compact extensions used by Furstenberg (or to the
nilsystems in Host and Kra). However, a more precise understanding
of this structure should clarify the apparent link between the anti-
uniform functions of level k appearing in Tao’s proof and the k-step
nilsystems used to prove Theorem 5.1.

7. Arithmetic progressions in the primes

Green and Tao continue in this vein to prove the existence of arith-
metic progressions in the primes. The starting point is clear: study
the averages of Equation (4.1) for the indicator function of the primes.
Roughly speaking, for a large integer N and real number 0 < δ ≤ 1,
they consider the function

f(n) =

{
log n if n is prime

0 otherwise ,

normalized such that its average on {0, 1, . . . , N − 1} is δ. Szemerédi’s
Theorem can not be applied because the function f is not bounded
independently of N . They begin by studying the closely related von

7Van der Waerden’s Theorem [Vdw] states that if the integers are partitioned
into finitely many pieces, then one of these pieces contains arbitrarily long arith-
metic progressions. This theorem motivated Erdös and Turán [ET] to conjecture
Szemerédi’s Theorem.
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Mangoldt function Λ(n), where

Λ(n) =

{
log p if n = pm for some m ∈ N

0 otherwise ,

and make use of the fact that this function is more natural analyti-
cally than f . Although the von Mangoldt function is supported on the
primes and their powers, the powers are sparsely enough distributed so
that they only contribute a small error term in the calculations. This
function has had many uses in number theory; for example, the unique
factorization theorem is equivalent to the statement

log n =
∑
d|n

Λ(d) for all positive integers n ,

and the Prime Number Theorem is equivalent to the statement

1

N

∑
1≤n≤N

Λ(n) = 1 + o(1) .

(Throughout, by o(1), we mean a quantity that tends to 0 as N → ∞,
and when this quantity depends on other constants, we include them
as subscripts on o.)

The function Λ mostly avoids giving weight to arithmetic progres-
sions a mod q when a and q are not relatively prime. Such arithmetic
progressions are more dense when q has small prime factors. This
means that the small primes make a disproportionate contribution to
Λ, making it too irregularly distributed for their purposes. There-
fore Green and Tao are forced to modify Λ, quotienting out the small
primes, so that it becomes pseudorandom. The precise definition and
modification is given below, but the idea is that the values of a pseu-
dorandom function should be distributed so that using any statistic to
measure them, one gets approximately the same measurement as that
arising from a random set of the same density.

The goal then becomes to extend Szemerédi’s Theorem, showing
that not only does a dense subset of the integers contain arbitrarily
long arithmetic progressions, but a dense subset of a pseudorandom
collection of integers also contains arbitrarily long arithmetic progres-
sions. Green and Tao do this by “transferring” Szemerédi’s Theo-
rem to a more general setting: the hypothesis in Theorem 4.1 that
f : ZN → R satisfies 0 ≤ f(x) ≤ 1 is replaced by f being bounded by
a more general function ν : ZN → R+ with certain useful properties.
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The function ν : ZN → R
+ is assumed to be a measure,8 meaning that

E(ν(x)|x ∈ ZN) = 1+o(1), and ν is also assumed to be pseudorandom.
They show:

Theorem 7.1 (Transference Theorem [GT1]). Let 0 < δ ≤ 1 be
a real number and let k ≥ 3 be an integer. If N is sufficiently large,
ν : ZN → R

+ is a k-pseudorandom measure, and f : ZN → R is func-
tion with 0 ≤ f(x) ≤ ν(x) for all x ∈ ZN and E(f(x)|x ∈ ZN) ≥ δ,
then

(7.1) E
(
f(x)f(x+r) . . . f(x+(k−1)r)|x, r ∈ ZN

) ≥ c(k, δ)−ok,δ(1) ,

where the constant c(k, δ) is the same as that in Theorem 4.1.

Other than the bounds on f , the only additional modification caused
by bounding f by a pseudorandom measure instead of the constant
function 1 is the introduction of the error term ok,δ(1), which tends to
0 as N → ∞. The dependence of this error is only on k and δ.

Before giving an indication of the proof of Theorem 7.1, we make
the notion of a pseudorandom measure more precise. (A reader not
interested in the technical details can skip the next few paragraphs.)
The measure ν : ZN → R

+ is said to be k-pseudorandom if ν satisfies
a k-linear forms condition and a k-correlation condition.

To define the linear forms condition, fix k, the length of the arith-
metic progression and assume that N is prime and larger than k. As-
sume that we have m linear forms ψi, 1 ≤ i ≤ m, with m ≤ k · 2k−1

and t variables with t ≤ 3k − 4. (The exact values of these constants
are not important for the proof; the importance lies in showing that a
particular choice of pseudorandom function satisfies these conditions.
For this, it only matters that the values depend on nothing but k.) Let
L = (Lij) be an m× t matrix, whose entries are rational numbers with
numerator and denominator bounded in absolute value by k. By choice
of N and k, we can view the entries of L as elements of ZN (recall that
N is prime). Assume further that each of the t columns of L are not
identically zero and that the columns are pairwise independent. Let
ψi(x) = bi +

∑t
j=1 Lijxj denote the m linear forms, where x ∈ Z

t
N and

bi ∈ ZN for 1 ≤ i ≤ m. The measure ν : ZN → R
+ is said to satisfy

the (m, t, L)-linear forms condition if

E
(
ν (ψ1(x)) . . . ν(ψm(x)) |x ∈ Z

t
N

)
= 1 + om,t,L(1) ,

where the dependence on N is assumed to be uniform in the choice of
the bi. The case m = 1 with ψ(x) = x corresponds to the measure ν

8As noted by Green and Tao, the name measure is a misnomer, and ν should
more accurately be called a probability density.
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with E(ν) = 1 + o(1), and this is the bound used in the Reformulated
Szemerédi Theorem (Theorem 4.1). For higher m, the values of the
measure ν evaluated on linear forms up to a certain complexity are, on
average, independent. If there were no restriction on the complexity,
the measure would be close to the ergodic theoretic notion of weak
mixing, meaning its values along any distinct linear forms would be,
on average, independent.

We now define the correlation condition. The measure ν : ZN → R
+

is said to satisfy a 2k−1-correlation condition if for each m with 1 ≤
m ≤ 2k−1, there exists a weight function τ = τm : ZN → R

+ with

E(τ q|z ∈ ZN) ≤ C(m, q)

for a constant C(m, q), for all 1 ≤ q < ∞ and that

E
(
ν(x + h1)ν(x + h2) . . . ν(x + hm)|x ∈ ZN

) ≤
∑

1≤i<j≤m

τ(hi − hj)

for all h1, h2, . . . , hm ∈ ZN .
The correlation condition arises in Goldston and Yildirim’s [GY]

work and is used for specific estimates applied to the prime numbers.
Although the linear forms condition does not arise in their work, their
estimates apply to ν satisfying this condition. Most of Green and
Tao’s computations only need the linear forms condition; the correla-
tion condition is used only in one place where the estimates are highly
technical.

In some sense, the Transference Theorem can be thought of as a
generalization of Furstenberg’s Multiple Recurrence Theorem. In the
ergodic set up, a natural choice of measure is the uniform one, assigning
each integer in {1, . . . , N} the equal weight 1/N . This measure is in-
variant with respect to the shift map x 
→ x+1 mod N . In Green and
Tao’s generalization, the measure behaves in a pseudorandom manner
with respect to the shift. For a certain choice of R (discussed below),
to each number in {1, . . . , N} having no prime factors less than R, the
new measure assigns the weight log R/N and in order to make the mea-
sure more regular, it assigns a small value to each of the other numbers
in {1, . . . , N}.

Lending credence to the idea that Szemerédi’s Theorem should hold
for a function bounded by a pseudorandom measure is the fact that a
pseudorandom measure is close to the constant function 1 in Gowers
norm:

Lemma 7.2 ([GT1]). Fix an integer k ≥ 1, let N > k be a prime
number, and assume that ν : ZN → R

+ is a k-pseudorandom measure.
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Then
‖ν − 1‖Ud = o(1)

for all 1 ≤ d ≤ k − 1.

The broad outline of the proof of Theorem 7.1 is similar to that of
Tao’s proof of Szemerédi’s Theorem sketched in the last section, but
both the technical details and the combination of ideas from seemingly
unrelated areas of mathematics make it a significantly more ambitious
undertaking. The innovation is the reduction of Theorem 7.1 to Sze-
merédi’s Theorem. The key argument, again, is a structure theorem,
but this time not only is there an error term in the decomposition, but
the decomposition is only valid on most of the space. Green and Tao
show:

Theorem 7.3 (Decomposition Theorem [GT1]). Let k ≥ 2 be an
integer, let 0 < ε � 1 be a small parameter, and let N = N(ε) be
sufficiently large. Assume that ν : ZN → R

+ is a k-pseudorandom
measure and that f ∈ L1(ZN) is a function satisfying 0 ≤ f(x) ≤ ν(x)
for all x ∈ ZN . Then there exists a σ-algebra Z and an exceptional set
Ω ∈ Z with E(ν(x)1Ω(x)|x ∈ ZN) = oε(1) such that

‖1ΩC E(ν − 1|Z)‖L∞ = oε(1)

and
‖1ΩC (f − E(f |Z))‖Uk−1 ≤ ε1/2k

,

where ΩC denotes the complement of Ω.

This means that outside a small subset Ω of ZN , a function f that is
bounded by a pseudorandom measure can be decomposed into a sum
of a uniform function g and an anti-uniform function h, plus a small
error term. The function g has small Gowers norm and corresponds
to f − E(f |Z) in the ergodic theoretic setup, while the non-negative
function h is bounded and corresponds to E(f |Z). Other than the error
terms, this parallels the ergodic theoretic decomposition associated to
a characteristic factor described in Section 5 and the decomposition
used by Tao described in Section 6.

The next ingredient in the proof of Theorem 7.1 is a way to control
the contribution of the Gowers uniform portion in the decomposition,
analogous to the generalized von Neumann Theorem. Once again, the
bound on the functions changes: instead of being bounded by the con-
stant 1, the functions are now bounded pointwise by 1 plus a pseudo-
random measure.

Theorem 7.4 (Pseudorandom Generalized von Neumann The-
orem [GT1]). Let k ≥ 2 be an integer, let N be a prime number, and
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assume that ν : ZN → R
+ is a k-pseudorandom measure. Assume that

f0, . . . , fk−1 ∈ L1(ZN) are functions such that

|fj(x)| ≤ ν(x) + 1 for all x ∈ ZN , 0 ≤ j ≤ k − 1 .

Then∣∣E(
f0(x)f1(x + n) . . . fk−1(x + (k − 1)n)|x, n ∈ ZN

)∣∣
= O

(
inf

0≤j≤k−1
‖fj‖Uk−1

)
+ o(1) .

We are now ready to outline the proof of Theorem 7.1, still glossing
over many technical details. We fix a function f that is bounded by a
pseudorandom measure and that has positive expectation on ZN . Us-
ing the Decomposition Theorem, the expectation on the left hand side
of Equation (7.1) (which is the average along arithmetic progressions)
is larger than the same expectation with 1ΩCf substituted for f , where
Ω is some small set. Ignoring the error term, we now use the decom-
position of this new function into g +h, where g is the Gowers uniform
portion and h is some bounded function. Much like the idea of a char-
acteristic factor in ergodic theory, we now want to discard the Gowers
uniform portion g and replace our function by h. The expectation on
the left hand side of Equation (7.1) can be expanded as a sum of 2k

expectations, by making the substitution of g + h for 1ΩCf . All terms
but one contain an occurrence of g in it and each of these terms is small
by the Pseudorandom Generalized von Neumann Theorem. We are left
only with a single term making a large contribution to the expectation,
and this term only contains occurrences of the function h. The good
news is that now this function h is bounded and so the usual Szemerédi
Theorem applies. Furthermore, f and h have approximately the same
expectation, and in particular the expectation on ZN of h is also posi-
tive. Thus by Szemerédi’s theorem, the expectation in Equation (7.1)
with f replaced by h is positive. Therefore, the same result holds for
f .

Lastly we give an indication of the choice of the function f and
measure ν needed to use the Transference Theorem for the primes.
The function is a variation on the von Mangoldt function, cut off at
a certain point, in order to make a function that is (vaguely speak-
ing) supported on primes of magnitude log N . Unfortunately, it does
not suffice to simply use a multiple of this function for ν, since as we
noted earlier, the primes, and therefore any multiple of the von Man-
goldt function, are not uniformly distributed across all residue classes,
whereas a pseudorandom function is. Instead, the measure ν is taken
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to have its support (again, vaguely speaking) on numbers n such that
all the prime factors of n − 1 are greater than some integer R. One
can view this measure as approximately log R times the characteristic
function of such numbers.

The ancient scholar Eratosthenes came up with a simple algorithm
for listing all the prime numbers up to a given N , referred to as the sieve
of Eratosthenes. Given a list of the numbers between 1 and N , starting
with 2, erase all nontrivial multiples of 2 up to N . Call the remaining
set P2. Returning to the beginning, take the first number greater than
2 and erase all of its nontrivial multiples up to N . In general, the
level R almost primes PR(N) are defined to be the set of all numbers
between 1 and N that contain no nontrivial factors less than or equal
to R. Thus if R =

√
N , we have that P√

N(N) consists exactly of the
prime numbers up to N . Mertens [Me] proved that the size |PR(N)| is
approximately cN/ log R for some positive constant c. Combining this
with the estimate from the Prime Number Theorem that the number of
primes up to N is approximately N/ log N , we have that the density of
primes in the almost primes PR(N) is about a multiple of log R/ log N .
Therefore if R is a small power of N , then the primes have positive
density in the level R almost primes. This motivates the function and
measure Green and Tao use. For completeness, we give the technical
definitions.

Let W denote the product of the primes up to 4(k + 1)!2 and let

R = Nk−12−k−4
. The truncated von Mangoldt function is defined to be

ΛR(n) =
∑

d|n,d≤R

µ(d) log(R/d) ,

where µ is the Möbius function.9 This is a cut off version of the von
Mangoldt function, since if R > n then ΛR(n) = Λ(n). This approx-
imation to Λ(n) has had wide use in analytic number theory, most
recently in the work of Goldston and Yildirim [GY].

Finally we need to define the measure ν that majorizes ΛR and whose
values are more uniformly distributed. The measure ν : ZN → R

+ is
defined for 0 ≤ n < N to be

ν(n) =

{
φ(W )

W
ΛR(Wn+1)2

log R
for N/(2k(k + 4)!) ≤ n ≤ 2N/(2k(k + 4)!)

1 otherwise ,

9The Möbius function µ(n) is defined by µ(n) = 0 if n is not a square free integer
and µ(n) = (−1)r if n is a square free integer and has r prime factors.
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where {0, 1, . . . , N − 1} is naturally identified with ZN and φ denotes
the Euler totient function.10 The function ΛR is evaluated at Wn + 1
to make it well distributed. (This quotienting out by small primes is
referred to as the W -trick.) The primes bounded by x are not uniformly
spread out in arithmetic progressions. (For example, there is only one
prime congruent to 0 mod 2, while there are approximately x/ log x
congruent to 1 mod 2.) Furthermore, if a and q are relatively prime
integers, the number of primes in the arithmetic progression a mod q
up to x is approximately x

log x
· 1

φ(q)
. If one considers integers n with

n ≡ a mod q and for which Wn+1 is prime, then there are none only
when q and Wa + 1 are not relatively prime and this can only happen
when q and W are relatively prime. This means that q has no small
prime factors and the values of Wn+1 are more uniformly distributed
among the arithmetic progressions.

The last major step is verifying that this choice of ν is k-pseudorandom.
This relies on techniques from analytic number theory, using and ex-
tending recent results of Goldston and Yildirim [GY] on finding small
gaps between primes.

8. Further directions

At this time, Green and Tao’s Theorem seems out of the reach of
ergodic theory. All theorems of combinatorial number theory that have
been proved using ergodic theory rely in some way or another on the
Correspondence Principle, which only applies to sets of integers with
positive upper density. However, the many similarities between Green
and Tao’s approach and proofs in ergodic theory make it clear that
the exact connection has yet to be understood. Perhaps a first step in
further understanding this connection would be to translate the notion
of a pseudorandom function (or sequence) to ergodic theory, somehow
replacing the given definition on the finite space ZN with a definition
on some infinite space. The ultimate goal would be to use translations
of the proof techniques of Green and Tao to obtain new convergence
results in ergodic theory.

Although Tao’s proof [T] of Szemerédi’s Theorem removes the com-
pactness argument needed in Furstenberg’s proof, it still requires a
lengthy induction to replace compactness. This induction only needs
finitely many steps, but the number of steps is not explicitly known.
A better understanding of the structure theorem used would probably

10The Euler totient function φ(n) is defined to be the number of positive integers
less than or equal to n that are relatively prime to n, with 1 being counted as
relatively prime to all numbers.
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improve the bounds that Tao extracts with this method. It seems that
finding the exact link between the anti-uniform functions of level k and
the k-step nilsystems introduced in the work of Host and Kra [HK1]
would clarify the connections between the two fields and probably lead
to new and interesting developments.

A natural question arises from these considerations. Bergelson and
Leibman [BL] used ergodic theory to establish a polynomial Szemerédi
type theorem11 and perhaps it is possible to carry out a similar pro-
gram to that of Green and Tao for this situation. Namely, transfer the
polynomial Szemerédi Theorem subsets of the integers with positive up-
per density contain polynomial patterns and show that dense subsets
of pseudorandom sets also contain polynomial patterns. This would
prove, for example, that there exist infinitely many triples (p, k, n) of
positive integers such that p, p + n, p + n2, . . . , p + nk consists only of
prime numbers.
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muting transformations. J. d’Analyse Math., 34 (1979), 275–291.

[FK2] H. Furstenberg and Y. Katznelson. A density version of the Hales-Jewett
Theorem. J. d’Analyse Math., 57 (1991), 64–119.

[Go] T. Gowers. A new proof of Szemerédi’s Theorem. GAFA, 11 (2001), 465–
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[S] E. Szemerédi. On sets of integers containing no k elements in arithmetic
progression. Acta Arith., 27 (1975), 299-345.

[T] T. Tao. A quantitative ergodic theory proof of Szemerédi’s theorem.
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Approaching the Shannon Limit: A Progress Report∗

R. J. McEliece

1. Introduction.

In 1948 Claude Shannon [26] published an historic monograph entitled A Mathematical
Theory of Communication which contained a series of 23 theorems that now form the
cornerstone of modern telecommunications and data storage systems. Shannon’s style
of proof was informal and intuitive, which briefly provoked controversy, but every single
one of Shannon’s assertions has stood the test of time. This article is about Shannon’s
Theorem 11, which is the intellectual zenith of A Mathematical Theory of Communication.
It deals with the problem of communicating reliably over unreliable channels, using a
communication paradigm of the general type depicted in Fig. 1.

Theorem 11 (Shannon, 1948). For [almost]∗ any channel, there exists a positive num-
ber C, the channel capacity, such that for any desired data rate R < C, and any desired
decoded bit error probability p > 0, there exists an encoder-decooder pair that permits
transmission of data over the channel at rate R and decoded error probability < p. For
R > C, arbiitrarly small p is not attainable.

U
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  . .  .  U

k

V
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  . .  .  V

k

X
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.  .  .  X
n

Y
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.  .  .  Y
n
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Information

bits
Encoder Codeword

Channel

Noisy

Codeword
Decoder

Decoded

Information

bits

Figure 1 . A General Communication system. Here
the rate is R = k

n bits per channel input, and the
decoded error probability is Pb = 1

k

∑k
i=1 Pr{Vi �= Ui}. .

* This research was supported by NSF, NASA, Qualcomm, Sony, and the Lee Center
for Advanced Networking

* Shannon proved his theorem for a relatively restricted class of channel models. Later
researchers have extended the proof to cover a vast array of channels.
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Shannon’s Theorem 11 and a bit more is illustrated in Figure 2, which shows the
smallest attainable decoded bit error probability as a function of the data rate R, where R
is measured in multiples of capacity. Note the phase transition at R = C. For R < C, the
minimum attainable p is 0+, whereas for R > C pmin = H−1

2 (1 − C/R) where H2(x) =
−x log2(x) − (1 − x) log2(1 − x) is the binary entropy function.
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Figure 2 . Shannon’s Theorem.

Shannon’s Theorem is an existence theorem (note the phrase “there exists an encoder-
decoder pair”) and we naturally ask “How hard is it to communicate at rate R and decoded
error probability p?” We will restrict ourselves to the case R < C, for if R > C we would
need to consider data compression, which is beyond the scope of this article. We are
especially interested in communicating reliably at rates very near capacity, s let us assume
in fact that

R = (1 − ε)C,

where ε is a small positive number. Now let’s define χe(ε, p) to be the minimum possi-
ble encoding complexity and χD(ε, p) the minimum possible decoding complexity , both
mmeasured in ariithmetic operation per information bit, for an encoder-decoder pair that
operates at rate R = (1 − ε)C and a decoded bit error probability p.

It is impoortant to know the behavior of χe(Dta, p) and χD(ε, p) for fixed p as ε → 0.
naturally we expect a singularity at ε = 0, but how severe is it? The classical results (i.e.,
prior to 1993) in this direction are not encouranging.

1.1 Theorem. On a discrete memoryless channel of capacity C, for any fixed 0 < p > 1/2
as ε → 0,

χE(p, ε) = O(1/ε2)

χD(p, ε0 = O(1/e8).

Proof: (Sketch) Use linear codes with (per-bit) encoding complexity O(n) and concate-
nated codes with decoding complexity O(n4) [7]. The blocklength n is related to ε by
n = O(1/ε2), because of the random coding error exponent, which says that the average

2
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Figure 4.. Three binary-input Discrete Memoryless Channels.

error probability for the ensemble of linear codes of rate R satisfiies

p ≤ exp(−nEr(R),

and
Er(C(1 − ε)) ≈ Kε2 as ε → 0.

Theorem 1.1 tells us that the encoding problem is not especially difficult, but it
suggests that decoding will be a bottleneck. There is one special case, however, for which
the decoding problem is, even classically, much less complex.

X=0 Y=0

X=1 Y=1

Y=?

1-p

1-p

p

p

Figure 3 . The Binary Erasure Channel.

1.2 Theorem. For the binary erasure channel, χD can be improved to

χD(ε, π) = O(1/ε4),

for fixed π, as ε → 0.

Proof: Decode with (per-bit) complexity O(n2) by solving linear equations for the erased
positions.

In the next section we will see how the “turbo revolution” has changed all this: the
complexity of communicating near the Shannon Limit now appears to be O(ε−1)!
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2. Turbo Codes.

The complexity estimates developed in the previous section were completely overthrown
in 1993 when Claude Berrou and Alain Glavieux introduced turbo-codes [3]. Turbocodes
are arguably the most important single invention in the history of coding, but since they
have been largely superceded by LDPC codes (which we discuss in the next section), our
coverage here will be scanty.

The key idea of the turbocode revolution is that of suboptimal iterative decoding. With
hindsight it is clear that pre-1993 coding theory and practice was hopelessly mired in a
maximum-likelihood paradigm. The justly celebrated turbo decoding algoritm is a low-
complexity iterative approximation to maximum a posteriori probability decoding, whose
performance, while demonstrably suboptimal, has nevertheless proved to be nearly optimal
in an impressive array of experiments around the world.

The turbo idea is illustrated in Figures 4–9. The data is encoded twice, once directly
as presented to the encoder and again after being scrambled. or “interleaved.” Correspond-
ingly, the decoder hahs two distinct modules, one for each encoding. These subdecoders
then exchange their estimates, and iteratively update their estimates until a consensus is
reached.

�Interleaver�

encoder 1�
 (IIR)�

encoder 2�
 (IIR)�

Figure 4 . A classical “parallel” turbo code.

�
Interleaver�

encoder 1� encoder 2�
 (IIR)�

Figure 5 . A “serial” turbo code.
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Figure 6 . Typical Performance of Turbo
Decoding vs. maximum a posteriori decoding.

E1
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c
h
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n
n
e
l

y1

y2

u

Figure 7 . The Turbo Decoding Problem
(Simplified):Infer u from {y1, y2}.
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TDM1

TDM2

y1

y2

Figure 8 . The “Turbo” Decoder Structure: D1 and D2

communicate theiir results to each other, updating their
soft estimates of u as they go, until a consennsus is reached

TDM
X

X'
Y

Figure 9 . The Turbo Decoder Module: X = (X1, . . . , Xk),
the priors in the form of likelihood ratios; Y = the channel
evidence; X ′ = (X ′

1, . . . , X
′
k), the “extrinsic” likelihoods:

X ′
i =

Pr{Ui = 1|Y }
Pr{Ui = 0|Y }

/
Xi

(evidence is not counted twice.)
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3. LDPC Codes.

Low-density parity-check (LDPC) codes now appear to be the “final solution” to the 1948
Shannon challenge. They are replacing turbo-codes in many applications, so that it is
reasonable to predict that in a few years turbo-codes will be obsolete. This is certainly
a strange development, since LDPC codoes were invented by Robert Gallager in 1962 [9]!
However, LDPC codes were largely forgotten until their rediscovery by Mackay [18], who
not only rediscovered them but used high-performance computers (which were not available
to Gallager) to simulate their performance and thereby demonstrate their astonishing
power.

Figure 10 shows the parity-check matrix and corresponding Tanner graph [28]. The
valid codewords, whcih are transmited over the noisy channel, are required to satisify the
parity-checks: HxT = 0. These equations are represented by the bipartite Tanner graph
with a variable node (circle) for each column and a check node (box) for each row. Thus
every nonzero entry in the H-matrix corresponds to an edge in the Tanner graph.

As will be seen in Figure 11, the noisy version of each transmitted code bit is entered
as “evidence” at the appropriate variable node. The evidence is ideally represented as a
“likelihoood ratio” of the form

m =
Pr{Xv = 1|E}
Pr{Xv = 0|E} ,

where Xv is the random variable corresponding to the variable node v.

This channel evidence is then modified and circulated around the Tanner graph until
a decision about the values of the codeword components can be reached. It remains to
describe the nature of the messages and the rules by which they are computed and updated.
(See Figures 14 and 13.)

These rules are explained in the captions to Figures 11–16. Briefly, the check-to-
variable messages (the λ-messages) are initialized to 1 and the variable-to-check messages
(the µ-messages) are initialized to 0. The update rule is

Mout = B

(∏
i

Mini

)
.

where B(x) = (1 − x)/(1 + x) is the so-called bilinear transformation. The message from
a variable node v to a check node c is

m(v → c) = Pr{Xv = 0} − Pr{Xv = 1}
= µ(Xv).

where Xv is the random variable associated with the node v. Similarly, the message from
a check node c to a variable node v is

m(v → c) =
Pr{Xv = 1}
Pr{Xv = 0}

= λ(Xv).
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Given a message (λ or µ) we can use it to make a decision about the corresponding
message bit:

[λ] =
{

0 if λ ≤ 1
1 if λ ≥ 1.

[µ] =
{

0 if µ ≥ 0
1 if µ ≤ 0.

We say that a message is correct if the corresponding decision matches the underlying
message bit. The hope, of course, is that after sufficiently many rounds of message passing,
the messages will be correct.

Figure 10 . A Small Tanner Graph,
corresponding to the parity-check matrix

H =

 1 1 0 1 0 1
1 0 1 1 1 0
0 1 1 0 1 1

 .

Figure 11 . Evidence from the Channel
enters the graph at the variable nodes.
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Figure 12 . Messages to a Check Node

Figure 13 . Messages to a Variable Node

m

m1

m2

mk
+
c

Figure 14 . The µ-messages. Given the incoming messages
m1, . . . , mk, what should the outgoing message m be? Answer:

m = m1 · · ·mk, provided the m’s are defined properly:

m(v → c) = µ(Xv) = Pr{Xv = 0} − Pr{Xv = 1}.

These message rules are based on the following simple observations.

3.1 Theorem. Let X1, . . . , Xn be independent GF (2)–valued random variables, and let
Sn = X1 + · · · + Xn. Then

Pr{Sn = 0} − Pr{Sn = 1} =
n∏

i=1

(Pr{Xi = 0} − Pr{Xi = 1})

9



m

m1

m2

mk v

Figure 15 . The λ-messages. Given the incoming messages
to a variable node, what should the outgoing messages be?

Answer: m = m1 · · ·mk, provided the m’s are defined properly:

m(c → v) = λ(Xv) =
Pr{Xv = 0}
Pr{Xv = 1} .

x

z
B(x y ...  z)

variable

or

check

node

...

y

incoming

messages outgoing

message

Figure 16 . The complete message update rule.

3.2 Theorem. Let the a priori probability of the binary random variable X be

Pr{X = 1} = Pr{X = 0} = 1/2.

Let y1, . . . , ym be independent (noisy) observations of x.

Pr{X = 1|y1, . . . , ym}
Pr{X = 0|y1, . . . , ym} =

m∏
i=1

Pr{X = 1|yi}
Pr{X = 0|yi}

.

3.3 Lemma. Let B(x) = 1−x
1+x . Then

µ(X) = B(λ(X))
λ(X) = B(µ(X)).
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4. Introducton to Density Evolution.

The message-passing algorithm described in the previous section is easy to implement, but
if the underlying graph (or ensemble of graphs) has cycles, it will not converge to the exact
a posteriori probabilities. Nevertheless, experimentally it works extraordinarily well. In
this section we will present an introduction to a deep general theory that at least partially
explains this remarkable performance. The key idea is that of density evolution.

X=0 Y=0

X=1 Y=1

Y=?

1-p

1-p

p

p

Figure 17 . Special Case: The Binary Erasure Channel.
Here m(v → c) ∈ {+1,−1, 0} and m(c → v) ∈ {0,∞, 1}.

In density evolution, the idea is to treat the messages sent as random variables over the
ensemble of code selection and noise sample, and to track the probability density function
of the messages, thereby obtaininng estimates of the probaility that the message is correct.

As an example, consider the BEC (Fig. 17). Then the µ-messages ca assume the
values {±1, 0}, and the λ-messages are {∞, 0, 1}. The bilinear transformation is described
as follows.

µ
B↔ λ

1 B↔ 0 (X = 0)

−1 B↔ ∞ (X = 1)

0 B↔ 1 (X =?)

Note that a λ-message is guaranteed to be correct unless it equals 1, and a µ-message
is correct unless it equals zero. Thus one can simply track the probability that a given
message is an “erasure.”

A typical LDPC code, or rather code ensemble (i.e. collection of codes) is shown in
Fig. 18. In this particular ensemble there are 6 degree 3 variable nodes and three degree
6 check nodes. Thus there are 6 × 3 = 18 edges connected to varible nodes and 18 edges
connected to thhe three check nodes. These edges are connected to each other via the
“interleaver,” Π so that the ensemble depicted in Fig. 18 represents 18! different Tanner
graphs.

Following the calculations in Figs. 19–26, we see that the (3, 6) ensemble threshold

11



+++

 variable nodes

check nodes

Interleaver

Figure 18 . Tanner Graph for a
(regular) (3, 6) LDPC Code Ensemble.

=

+

p

Figure 19 . The (3, 6) Ensemble, showing just one degree-3
variable node and one degree-6 check node. Evidence from

the channel arrives from below. Thisi evidence, which
“seeds” the decoder, is absent (erased) with probability p.

for the BEC is p = 0.425, as compared to the Shannon limit for codes of rate 1/2, viz.
p = 0.50.
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=

+

p

xxx

Figure 20 . The First Step. x = probability that the
indicated message is “erasure.” (On the first iteration, x = p.)

=

+

p

xxx

yx x x x x

Figure 21 . The Second Step. y is an erasure iff at least
one of the x’s is an erasure. Thus y = 1 − (1 − x)5.
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=

+

p

y y y y y y

y y x'

Figure 22 . The Third Step. x′ is an erasure iff both y’s
and the channel input are: x′ = py2 = p(1 − (1 − x)5)2.

=

+

p

x
L

x
L

y
L

y
L

Figure 23 . To summarize: if the probability of
an erased message is xL on the Lth iiteration, then

xL+1 = f(xL),

where

f(x) = p(1 − (1 − x)5)2.
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f(x)

p=0.4

Figure 24 . With p = 0.4, the only solution
to the equation f(x) = x is x = 0.

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

Figure 25 . With p = 0.425, the curves are just
tangent. Therefore the noise threshold for the (3, 6)
ensemble is 0.425, which should be compared to the

Shannon Lmit for codes of ate 12, viz., p = 0.5.
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Figure 26 . With p = 0.45, there are two nonzero solutions.
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FLOER THEORY AND LOW DIMENSIONAL TOPOLOGY

DUSA MCDUFF

Abstract. My lecture will aim to give a pictorial introduction to the
new 3- and 4-manifold invariants recently constructed by Ozsvath and
Szabo. These are based on a Floer theory associated with Heegaard
diagrams. The following notes try to give somewhat more of the back-
ground than would be possible in a lecture. Readers wanting to know
more should consult Ozsvath and Szabo’s recent survey article [8].

1. The Floer complex

This section begins by outlining traditional Morse theory, using the Hee-
gaard diagram of a 3-manifold as an example. It then describes Witten’s
approach to Morse theory, a finite dimensional version of Floer theory. Fi-
nally, it discusses Lagrangian Floer homology. This is fundamental to Ozs-
vath and Szabo’s work; their Heegaard–Floer theory is a special case of this
general construction.

1.1. Classical Morse theory. Morse theory attempts to understand the
topology of a space X by using the information provided by real valued
functions f : X → R. In the simplest case, X is a smooth m-dimensional
manifold, compact and without boundary, and we assume that f is generic
and smooth. This means that its critical points p are isolated and there is a
local normal form: in suitable local coordinates x1, . . . , xm near the critical
point p = 0 the function f may be written as

f(x) = −x2
1 − · · · − x2

i + x2
i+1 + · · · + x2

m.

The number of negative squares occurring here is independent of the choice
of local coordinates and is called the Morse index ind(p) of the critical
point.

Functions f : X → R that satisfy these conditions are called Morse

functions. One analyses the structure of X by considering the family of
sublevel sets

Xc := f−1(−∞, c].
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2 DUSA MCDUFF

These spaces are diffeomorphic as c varies in each interval of regular (i.e.
noncritical) values, and their topology changes in a predictable way as c
passes a critical level.

One way to prove this is to consider the negative gradient flow of
f . Choose a generic metric µ on X. Then the gradient vector field ∇f is
perpendicular to the level sets f−1(c) at regular values and vanishes only at
the critical points. Therefore one can push a regular level f−1(c) down to
f−1(c− ε) by following the flow of ∇f . Moreover one can understand what
happens to the sublevel sets as one passes a critical level by looking at the
set of downward gradient trajectories emanating from the critical point p.
The points on this set of trajectories form the unstable manifold

W u
f (p) := {p} ∪ {

u(s) : s ∈ R, u̇(s) = −∇f(u(s)), lim
s→−∞u(s) = p

}
.

It is easy to see that W u
f (p) is diffeomorphic to Rd where d = ind(p). Simi-

larly, each critical point has a stable manifold W s
f (p) consisting of trajecto-

ries that converge towards p as s → ∞.
For example, if c is close to min f (and we assume that f has a unique

minimum) then the sublevel set Xc is diffeomorphic to the closed ball Dm :=
{x ∈ Rm : ‖x‖ ≤ 1} of dimension m. When c passes a critical point p of
index 1 a one handle (homeomorphic to [0, 1]×Dm−1) is added. One should
think of this handle as a neighborhood of the unstable manifold W u

f (p) ∼= R.
Similarly, when one passes a critical point of index 2 one adds a 2-handle:
see Milnor [4]. When m = 2, a 2-handle is just a 2-disc, as one can see in the
well known decomposition for the 2-torus T = S1 × S1 given by the height
function: cf. Fig. 1.

The next example shows how one can use a Morse function to give a
special kind of decomposition of a 3-manifold Y that is known as a Heegaard
splitting. This description of Y lies at the heart of Ozsvath and Szabo’s
theory.

Example 1.1. Heegaard diagram of a 3-manifold. Choose the Morse
function f : Y → R to be self-indexing, i.e. so that all the critical points of
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index i lie on the level f−1(i). Then the cut f−1(3/2) at the half way point
is a Riemann surface Σg of genus g equal to the number of index 1 critical

points of f , and the sublevel set Y 3/2 is a handlebody of genus g, i.e. the
union of a 3-ball D3 with g 1-handles: see Fig. 2. By symmetry, the other
half f−1[3/2, 3] of Y is another handlebody of genus g. Thus Y is built from
a single copy of the surface Σ = f−1(3/2) by attaching handlebodies Uα, Uβ

to its two sides.
The attaching map of Uα is determined by the loops in Σ that bound

discs in Uα: if Σ has genus g, there is an essentially unique collection of
g disjoint embedded circles α1, . . . , αg in Σ that bound discs D1, . . . ,Dg in
Uα. These discs are chosen so that when they are cut out the remainder
Uα � {α1, . . . , αg} of Uα is still connected. Therefore Y can be described by
two collections α := {α1, . . . , αg} and β := {β1, . . . , βg} of disjoint circles
on the Riemann surface Σg. See Fig. 3. This description (known as a
Heegaard diagram) is unique modulo some basic moves.1

As an example, there is a well known decomposition of the 3-sphere
{(z1, z2) : |z1|2 + |z2|2 = 1} into two solid tori (handlebodies of genus 1),
U1 := {|z1| ≤ |z2|} and U2 := {|z1| ≥ |z2|}, and the corresponding circles in
the 2-torus Σ1 = {|z1| = |z2|} are

α1 =
{ 1√

2
(eiθ, 1) : θ ∈ [0, 2π]

}
, β1 =

{
(

1√
2
(1, eiθ) : θ ∈ [0, 2π]

}
,

with a single intersection point ( 1√
2
, 1√

2
). Section 2 in [5] contains a nice

description of the properties of Heegaard diagrams.
The Oszvath–Szabo invariants capture information about the intersection

points αj ∩ βk of these two families. Note that each αj is the intersection

1These are; isotoping the loops in α, β, changing these loops by “handleslides” and
finally stabilizing Σg by increasing its genus in a standard way.
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W s(pj) ∩ Σ of the upward gradient trajectories from some index 1 critical
point pj of f with the level set Σ. Similarly, the βk are the intersections with
Σ of the downward gradient trajectories from the index 2 critical points qk.
Hence, each intersection point αj ∩ βk corresponds to a gradient trajectory
from qk to pj.

This traditional version of Morse theory is useful in some infinite dimen-
sional cases as well, especially in the study of closed geodesics. Here one
looks at the length (or energy) functional F on the space X of smooth loops
in X. Its critical points are closed geodesics. They may not be isolated but
they have finite index. For further discussion see Bott’s wonderful survey
article [1].

1.2. The Morse–Witten complex. Witten observed that the sublevel
sets f−1(−∞, c] have little physical meaning. More relevant are the gradi-
ent trajectories between critical points, which occur as “tunnelling effects”
in which one state (regime at a critical point) affects another. His influen-
tial paper [10] pointed out that one could use these trajectories to build a
complex C∗(X; f) that calculates the homology of a manifold X as follows.
The k-chains are finite sums of critical points of index k:

(1.1) Ck(X; f) =
{ ∑

x∈Critk(f)

ax

〈
x
〉

: ax ∈ Z

}
,

and the boundary operator ∂ : Ck(X; f) → Ck−1(X; f) has the form

(1.2) ∂〈x〉 =
∑

y∈Critk−1(f)

n(x, y)
〈
y
〉
,

where n(x, y) is the number of gradient trajectories of f from x to y. (Here
one either counts mod 2 or counts using appropriate signs that come from
suitably defined orientations of the trajectory spaces.) Note that the chain
groups depend only on f but the boundary operator depends on the choice
of a generic auxiliary metric µ.

We claim that C∗(X; f) is a chain complex, i.e. that ∂2 = 0. To see
this, note that

∂2
〈
y
〉

=
∑

y∈Critk−1(f)

n(x, y) ∂
〈
y
〉

=
∑

y∈Critk−1(f)

∑
z∈Critk−2(f)

n(x, y)n(y, z)
〈
z
〉
.

The coefficient
∑

y n(x, y)n(y, z) of
〈
z
〉

in this expression is the number of
once-broken gradient trajectories from x to z and vanishes because these
occur in cancelling pairs; the space

M̂(x, z) := M(x, z)/R =
(
W u

f (x) ∩ W s
f (y)

)
/R
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of (unparametrized)2 trajectories from x to y is a union of circles and open
intervals whose ends may be identified with the set of once-broken gradient
trajectories from x to z.

Therefore the homology H∗(X; f) := ker ∂/im∂ of this complex is de-
fined. It turns out to be isomorphic to the usual homology H∗(X) of X. In
particular, it is independent of the choice of metric µ and function f .

Remark 1.2. Morse–Novikov theory. There is a variant of this con-
struction whose initial data is a closed 1-form ν on X instead of a Morse
function. If ν is integral, it has the form ν = df for some circle valued func-

tion f : X → S1, and there is a cover Z → X̃ → X of X on which f lifts to a

real valued function f̃ . Each critical point of f lifts to an infinite number of

critical points of f̃ . The Morse–Novikov complex of f is essentially just the

the Morse complex of f̃ . It supports an action of the group ring Z[U,U−1]

of the group {Un : n ∈ Z} of deck transformations of the cover X̃ → X and
is finitely generated over this ring. One of the Heegaard–Floer complexes is
precisely of this kind.

Remark 1.3. Operations on the Morse complex. This point of view
has proved very fruitful, not only for the applications we discuss later, but
also for the understanding of the topology of manifolds and their loop spaces,
a topic of central importance in so-called “string topology”. Here the aim is
to understand various homological operations (e.g. products) at the chain
level, and it is very important to have a versatile chain complex to work
with. The Morse–Witten complex fits into such theories very well. For
example, given three generic Morse functions fk, k = 1, 2, 3, one can model
the homology intersection product Hi ⊗Hi → Hi+j−m on an m-dimensional
manifold by defining a chain level homomorphism

φ : Ci(X; f1) × Cj(X; f2) → Ci+j−m(X; f3)

by counting Y -shaped trajectories from a pair (x1, x2) of critical points in
Crit(f1) × Crit(f2) to a third critical point x3 ∈ Crit(f3) whose two arms
are gradient trajectories for f1 and f2 and whose leg is a trajectory for f3.
Thus

φ(x1, x2) =
∑

n(x1, x2, x3)
〈
x3

〉
,

where n(x1, x2, x3) is the number of such trajectories, counted with signs.
If the functions fk and metric µ are generic, then this number is finite
and agrees with the number of triple intersection points of the three cycles
W s

f1
(x1),W

s
f2

(x2) and W u
f3

(x3) which have dimensions i1, i2 and m − i3 re-
spectively, where i3 = i1 + i2 − m. In fact, there is a bijection between the
set of Y -images and the set of such triple intersection points.

This is just the beginning. One thinks of Y as a tree graph with two
inputs at the top and one output at the bottom. The nonassociativity of

2The elements a ∈ R act on the trajectories u : R → X in M(x, z) by reparametrization:
a ∗ u(s) := u(s + a).
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the intersection product at the chain level gives rise to a new operation that
counts maps of trees in X with three inputs and one output. Continuing this
way, one may construct the full Morse–Witten A∞-algebra as well as many
other homology operations such as the Steenrod squares: see for example
Cohen [2].

The fact that the chain complexes of Lagrangian Floer theory support
similar maps is an essential ingredient of Ozsvath and Szabo’s work.

1.3. Floer theory. Inspired partly by Witten’s point of view but also by
work of Conley and Gromov, Floer realised that there are interesting infinite
dimensional situations in which a similar approach makes sense. In these
cases, the ambient manifold X is infinite dimensional and the critical points
of the function F : X → R have infinite index and coindex. Therefore
one usually cannot get much information from the sublevel sets F−1(−∞, c]
of F . Also, one may not be able to choose a metric on X such that the
gradient flow of F is everywhere defined. However, Floer realised that in
some important cases one can choose a metric so that the spaces M(x, y) of
gradient trajectories between distinct critical points x, y of F have properties
analogous to those in the finite dimensional case. Hence one can define
the Floer chain complex using the recipe described in equations (1.1)
and (1.2) above.

We now describe the version of Floer theory used by Ozsvath–Szabo. In
their situation both the critical points of F and its gradient flow trajectories
have natural geometric interpretations.

Example 1.4. Lagrangian Floer homology. Let M be a 2n-dimensional
manifold with symplectic form ω (i.e. a closed, nondegenerate 2-form) and
choose two Lagrangian submanifolds L0, L1. These are smooth submanifolds
of dimension n on which the symplectic form vanishes identically. (Physicists
call them branes.) We assume that they intersect transversally and also that
their intersection is nonempty, since otherwise the complex we aim to define
is trivial.

Denote by P := P(L0, L1) the space of paths x from L0 to L1:

x : [0, 1] → M, x(0) ∈ L0, x(1) ∈ L1.

Pick a base point x0 ∈ L0 ∩ L1 considered as a constant path in P and

consider the universal cover P̃ based at x0. Thus elements in P̃ are pairs,
(x, x̂) where x̂ is an equivalence class of maps x̂ : [0, 1]×[0, 1] → M satisfying
the boundary conditions

x̂(0, t) = x0, x̂(s, i) ∈ Li, x̂(1, t) = x(t).

The function F is the action functional A : P̃ → R given by

A(x, x̂) =

∫ 1

0

∫ 1

0
x̂∗(ω),
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and its critical points are the lifts to P̃ of the points of the intersection
L0 ∩L1. (See Fig. 4. A does not depend on the homotopy class of the map
x̂ because ω is closed and vanishes on the Li.)

Now, let us consider the A-gradient trajectories between the critical points.
Since P is infinite dimensional these depend significantly on the choice of
metric. We use a metric on P that is determined by a particular kind of
Riemannian metric on M , namely a metric gJ given in the form gJ(v,w) =
ω(v, Jw) where J : TM → TM is an almost complex structure on M that
is compatible with ω in the sense that3

ω(Jv, Jw) = ω(v,w), ω(v, Jv) > 0, for v,w ∈ TpM � {0}.
It then turns out4 that the gradient trajectories û : R → P̃ of A are given
by J-holomorphic strips

u : R × [0, 1] → M, u(s, t) := û(s)(t),

in M with boundary on L0 and L1:

(1.3) ∂su + J(u)∂tu = 0, u(s, 0) ∈ L0, u(s, 1) ∈ L1.

One cannot always define a Floer complex in this setup because ∂2 may
not always vanish. The basic problem is that it may be impossible to define a

good compactification of the 1-dimensional trajectory spaces M̂(x, z) simply
by adding once-broken trajectories. (There is recent work by Fukaya–Oh–
Ohta–Ono that sets up a framework in which to measure the obstructions
to the existence of the Floer complex.) However, Ozsvath–Szabo consider a

3These equations generalise the well known relations between the Kähler metric gJ

and Kähler form ω on a Kähler manifold M . The only difference is that the almost
complex structure J need not be integrable, i.e. need not come from an underlying complex
structure on the manifold M .

4The associated L2-inner product on the tangent bundle of the path space is defined
as follows. Given a path x : [0, 1] → M the tangent space Tx(P) consists of all (smooth)
sections ξ of the pullback bundle x∗(TM), i.e. ξ(t) ∈ Tx(t)M for all t ∈ [0, 1] and satisfies
the boundary conditions ξ(i) ∈ Tx(i)Li for i = 0, 1. Given two such sections ξ, η, we set

˙
ξ, η

¸
:=

Z 1

0

gJ (ξ(t), η(t)) dt.

Then the gJ -gradient of A is the vector field ∇A defined by setting the inner product˙
∇A, ξ

¸
equal to dA(ξ), (the differential dA evaluated on the tangent vector ξ.)
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very special case of this construction in which the Lagrangian submanifolds
arise from the geometry of the Heegaard diagram. In their case, ∂2 = 0 and
so the Floer homology groups HF∗(L0, L1) are defined. Moreover they are
independent of the choice of almost complex structure J on M and of any
perturbations used in their construction.

Just as in the case of the Morse complex where one can define vari-
ous products on the chain level by counting images of Y s and other trees,
one can define topologically interesting chain maps between the complexes
CF∗(Li, Lj) for different Lagrangian pairs by counting holomorphic triangles
(think of these as fattened up Y s) or other polygons, with each boundary
component mapping to a different Lagrangian submanifold Li. For short
we refer to the collection of such maps as the naturality properties of
Lagrangian Floer theory. These properties lie at the heart of the proof that
the Heegaard–Floer groups depend only on the manifold Y rather than on
the chosen Heegaard splitting. They can also be used to establish various
interesting long exact sequences in the theory. Similar structures appear
in Seidel’s work [9] on the Fukaya category of a symplectic manifold, the
basis of one side of the homological mirror symmetry conjecture.

2. Heegaard–Floer theory

In this section we first define the Heegaard–Floer complexes. Then we
briefly describe some applications.

2.1. Definition of the invariants. We saw in Example 1.1 that a 3-
manifold Y is completely determined by a triple (Σ, α, β) where Σ is a
Riemann surface of genus g and α, β are sets of disjoint embedded circles

α = {α1, . . . , αg}, β = {β1, . . . , βg}.
Ozsvath and Szabo’s idea is to use this data to construct a symplectic mani-
fold (M,ω) together with a pair of Lagrangian submanifolds Tα, Tβ and then
to consider the corresponding Floer complex. This is a very rough version of
their idea: in fact the manifold is not quite symplectic, the submanifolds are
not quite Lagrangian and they also put some extra structure on the Floer
complex. The most amazing thing about their construction is that it does
give interesting 3-manifold invariants.

For simplicity we shall assume throughout the following discussion that
Y is a rational homology sphere, i.e. that H∗(Y ; Q) ∼= H∗(S3 : Q). This
means that the abelianization H1(Y ; Z) of the fundamental group π1(Y ) is
finite, that H2(Y ; Z) = 0, and that Y is orientable. However, the invariants
may be defined for all Y .

The manifold M : This is the g-fold symmetric product Mg := SymgΣg

of Σg, i.e. the quotient

Mg :=
∏
g

Σ/Sg,
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of the g-fold product
∏

g Σ := Σ × · · · × Σ by the obvious action of the
symmetric group Sg on g letters. Mg is smooth: if C is a local chart in Σ
then the points in SymgC are unordered sets of g points in C and hence
are the roots of a unique monic polynomial whose coefficients give a local
chart on SymgC. However, Mg has no natural smooth structure; it inherits
a complex structure JM from the choice of a complex structure j on Σ,
but different choices of j give rise to different5 smooth structures on Mg.
Similarly, although (Mg, JM ) is a Kähler manifold and so has symplectic
structures, there is no natural choice of symplectic structure on Mg.

The manifold Mg has rather simple homotopy and cohomology. For exam-
ple, in genus two M2 := Sym2Σ2 is a 1-point blow up of the standard 4-torus
T4, i.e. topologically it is the connected sum of T4 with a negatively oriented
copy of the complex projective plane. In general, π1(Mg) ∼= H1(Mg; Z) is
abelian of rank 2g. In fact the inclusion Σ × pt × · · · × pt induces an iso-
morphism H1(Σg) ∼= π1(Mg). When g > 1 the cohomology ring of Mg has
one other generator in H2(Mg) that is Poincaré dual to the submanifold

{z} × Symg−1(Σ) ⊂ Mg,

where z is any fixed point in Σ. Correspondingly π2(Mg) = Z, with generator

S2 ≡ Σ/ρ
ι

↪→ Sym2(Σ) → Symg(Σ),

where we think of the 2-sphere S2 as the quotient of Σ by a suitable involu-
tion ρ (e.g. the hyperelliptic involution) and set

ι(z) := [z, ρ(z)] ∈ Sym2Σ, z ∈ Σ.

The fact that π2(Mg) has rank 1 and is generated by a holomorphic 2-
sphere with trivial normal bundle is one of the reasons why Ozsvath–Szabo’s
boundary operator ∂ has ∂2 = 0. (Technically, this is in the monotone

case.)

The tori Tα, Tβ: Because the circles αi are mutually disjoint, the product

α1 × · · · × αg ⊂
∏
g

Σ

maps bijectively onto a torus Tα in Mg. This torus is clearly totally real,
i.e. its tangent bundle TTα intersects JM (TTα) transversally. There is
no natural smooth symplectic structure on Mg that makes it Lagrangian,
but this does not really matter since its inverse image in the product is
Lagrangian for product symplectic forms.

5These smooth structures sj are diffeomorphic. They are different in the sense that the
identity map (M, sj) → (M, sj′) is not smooth. Readers familiar with complex geometry
might note that SymgΣg is a rather special complex manifold. It is birationally equivalent
to the Picard variety Picg(Σ) ∼= T2g of Σ: to get a map SymgΣ → Picg(Σ) think of the
set of g points as a divisor and map it to the point in Picg(Σ) given by the corresponding
degree g line bundle.
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If the αj and βk intersect transversally then the two tori Tα, Tβ also
intersect transversally. Each intersection point can be written as

x := (x1, . . . , xg), xk ∈ αk ∩ βπ(k), k = 1, . . . , g, π ∈ Sg.

The trajectory spaces M(x,y): Fix a complex structure j on Σ and
consider the corresponding complex structure J = JM on the symmmetric
product Mg. Given two intersection points x,y ∈ Tα ∩ Tβ the elements in
M(x,y) are the J-holomorphic strips u : R×S1 → Mg from x to y satisfying
the conditions of (1.3). The domain R×S1 is conformally equivalent to the
closed unit disc D in C with the two boundary points ±i removed. Thus
Ozsvath–Szabo think of the strips as continuous maps

u : D → Mg,

that are holomorphic in the interior int D and take the left boundary ∂D ∩
{�z < 0} to Tα and the right boundary ∂D ∩ {�z > 0} to Tβ. Continu-
ous maps φ : D → Mg that satisfy these boundary conditions but are not
necessarily holomorphic are called Whitney discs from x to y.

One can define a complex whose vertices are the intersection points Tα∩Tβ

and whose boundary map is defined as in (1.2) by counting the number of
elements in the 0-dimensional components of M(x,y)/R. However, this
complex contains no interesting information: its homology depends just on
H∗(Y ). Therefore Ozsvath and Szabo add two pieces of extra structure.
Firstly, they observed that this complex decomposes into a direct sum of
subcomplexes that are indexed by the Spinc-structures6 s on Y . Secondly,

they work in a suitable covering P̃ of the path space P(Tα, Tβ) with deck
transformation group Z. By taking the action of the generator U of this
group into account as in Remark 1.2, they define various different, but re-
lated, chain complexes

CF∞(Y, s), ĈF (Y, s), CF+(Y, s), CF−(Y, s), CFred(Y, s).

Whitney discs and Spinc-structures: Given x,y ∈ Tα ∩ Tβ we denote
by π2(x,y) the set of homotopy classes of Whitney discs from x to y. Recall
from Example 1.1 that each intersection point αj ∩ βk lies on a unique f -
gradient trajectory in Y that connects an index 2 critical point qk to an index
1-critical point pj . Thus the point x ∈ Tα can be thought of as a g-tuple of
such gradient flow lines connecting each pj to some qk. The corresponding
1-chain γx in Y is called a simultaneous trajectory.

When g > 1 there is a Whitney disc φ : D → Mg from x to y only if the
1-cycle γx − γy is null homologous. To see this, consider the commutative

6This gives a point of contact with the Seiberg–Witten invariants, which depend for
their very definition on the choice of a Spinc-structure.
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diagram

(2.1)
F

eφ→ ∏
Σ

↓ π ↓
D

φ→ SymgΣ,

where F → D is a suitable (possibly disconnected) branched g-fold cover (the

pullback of π by φ.) Denote the component functions of φ̃ by φ̃� : F → Σ.
The inverse images of the points ±i divide the boundary of F into arcs

that that are taken by the φ̃� alternately into subarcs of the α and β curves
joining the intersections in x to those in y. Each such subarc in an αj-curve
extends to a triangle in Y consisting of f -gradient flow lines in the stable
manifold W s(pj). Similarly the subarcs in βk extend to triangles in the
unstable manifolds W u(qk), and it is not hard to see that the union of these

triangles with the surfaces φ̃�(F ) form a 2-chain with boundary γx−γy: see
Fig. 5.

We say that two intersection points x,y are equivalent if π2(x,y) is
nonempty. Using the Mayer–Vietoris sequence for the decomposition Y =
Y1∪Y2 one can check that the differences γx−γy generate H1(Y ; Z). Hence
these equivalence classes form an affine space modelled on the finite abelian
group H1(Y ; Z). The set of Spinc structures on Y is also an affine space
modelled on H1(Y ; Z) ∼= H2(Y ; Z).

We now explain how the choice of a point z ∈ Σ that does not lie on any
αj or βk curve determines a natural map

sz : Tα ∩ Tβ → Spin c(Y )

such that sz(x) = sz(y) iff γx − γy = 0.
A Spinc-structure on Y may be thought of as a decomposition of the

(trivial) tangent bundle TY into the sum L⊕R of a complex line bundle L
with a trivial real line bundle,7 and so corresponds to a nonvanishing vector

7A Spinc-structure on Y is a lift of the structural group SO(3) of the tangent bundle
TY to the group Spin c(3) := Spin (3) ×Z/2Z S1 = SU(2) ×Z/2Z S1.
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field ξ on Y (a section of R) that is well defined up to homology.8 Therefore
to define sz(x) we just need to associate a nonvanishing vector field σx to
x that is well defined modulo homology. But z lies on unique f -gradient
trajectory γz from max f to min f . This, together with the simultaneous
trajectory γx, pairs up the set of critical points of f . Since each pair has
index sum 3, the gradient vector field ∇f of f can be modified near these
trajectories to a nonvanishing vector field σx. Then σx = ∇f outside a
union of 3-balls and so is well defined up to homology. We therefore set

sz(x) = [σx] ∈ Spin c(Y ).

Definition of CF∞(Y, s): Given a Spinc-structure s, denote by S ⊂ Tα ∩
Tβ the corresponding set of intersection points. We define CF∞(Y, s) to
be the free abelian group with generators [x, i] ∈ S × Z and with relative
grading

gr
(
[x, i], [y, j]

)
:= µ(φ) − 2(i − j + nz(φ)).

Here φ is any Whitney disc from x to y, nz(φ) is its intersection number with
the generator {z}× Symg−1(Σ) of H2n−2(Mg) and µ(φ) is its Maslov index,
that is, the expected dimension of the set M(x,y;φ) of all components of
the trajectory space M(x,y) that contain elements homotopic to φ. One
can show that the number µ(φ) − 2nz(φ) is independent of the choice of φ.
We then define the boundary operator δ∞ by:

δ∞([x, i]) =
∑
y∈S

∑
φ∈π2(x,y):µ(φ)=1

n(x,y;φ) [y, i − nz(φ)],

where n(x,y;φ) denotes the (signed) number of elements in

M̂(x,y;φ) := M(x,y;φ)/R.

For the reasons outlined in Example 1.4, (δ∞)2 = 0. Hence CF∞(Y, s) is a
chain complex.

Definition of CF±(Y, s) and ĈF (Y, s): Since the submanifold {z} ×
Symg−1(Σ) is a complex hypersurface, any holomorphic trajectory meets it
positively. In other words, nz(φ) ≥ 0 whenever M(x,y;φ) is nonempty.
Therefore the subset CF−(Y, s) generated by the elements [x, i] with i < 0
forms a subcomplex of CF∞(Y, s). We define CF+(Y, s) to be the quotient
CF∞(Y, s)/CF−(Y, s), i.e. the complex generated by [x, i], i ≥ 0. All three
complexes are Z[U ]-modules where U acts by

U · [x, i] = [x, i − 1],

reducing grading by 2. Finally we define ĈF (Y, s) to be the complex gen-
erated by the kernel of the U -action on CF+(Y, s). Thus we may think of

8Two nonvanishing vector fields are called homologous if one can be homotoped through
nonvanishing vector fields to agree with the other except on a finite union of 3-balls.
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ĈF (Y, s) as generated by the elements
〈
x
〉
,x ∈ S, with differential

∂̂
〈
x
〉

=
∑
y

∑
φ∈π2(x,y):µ(φ)=1,nz(φ)=0

n(x,y;φ)
〈
y
〉
,

i.e. we count only those trajectories that do not meet {z} × Symg−1(Σ).
The corresponding homology groups are related by exact sequences
(2.2)

. . . −→ HF−(Y, s)
i−→ HF∞(Y, s)

π−→ HF+(Y, s)
δ−→ . . .

. . . −→ ĤF (Y, s)
j−→ HF+(Y, s)

U−→ HF+(Y, s) −→ . . . .

There is yet another interesting group, namely HFred(Y, s), the cokernel of
the above map π. This vanishes for the 3-sphere and for lens spaces. Later,
we will use the fact that there is a pairing HF+ ⊗ HF− → Z, that induces
a pairing

(2.3)
〈·, ·〉 : HFred ⊗ HFred → Z.

The following result is proved in [5].

Theorem 2.1. Each of these relatively Z-graded Z[U ]-modules is a topolog-

ical invariant of the pair (Y, s).

The proof that these homology groups are independent of the choice of
almost complex structure j on Σ, of isotopy class of the loops αi, βj and
of basepoint z, uses fairly standard arguments from Gromov–Witten–Floer
theory. To see that they remain unchanged under handle slides of the curves
in α, β one uses the naturality properties of Lagrangian Floer homology,
defining a chain map by counting suitable holomorphic triangles. Finally
the fact that they are invariant under the stabilization of the Heegaard
splitting uses a “stretch the neck” argument.

At first glance it is not at all clear why one needs such a variety of homol-
ogy groups. However, if we ignore the action of U and consider only HF∞

we get very little information. Thus, for example, it is shown in [5] that
when Y is a homology 3-sphere

HF∞(Y, s) ∼= Z[U,U−1],

for all choices of s.9 In fact the different complexes HF are just ways of
encoding the subtle information given by the basepoint z. For they may all
be defined in terms of the chain complex CF−(Y, s) of Z[U ]-modules:

• CF∞(Y, s) is the “localization” CF−(Y, s) ⊗ Z[U,U−1],

• CF+(Y, s) is the cokernel of the localization map, and

• ĈF (Y, s) is the quotient CF−(Y, s)/U · CF−(Y, s).

9A similar phenomenon occurs in the Hamiltonian Floer theory of the loop space of a
symplectic manifold M . The resulting homology groups FH∗(M ; H, J) are always (addi-
tively) isomorphic to the homology of M , but one gets interesting information by filtering
by the values of the action functional.
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This terminology is not merely fanciful. In the conjectured equivalence
between this and the Seiberg–Witten–Floer theory of Y , which is an S1-
equivariant theory, the element U corresponds to the generator of H2(BS1),
although the underlying geometric reason for this is not yet understood: see
Lee[3].

Example 2.2. Consider the case Y = S3. We saw in Example 1.1 that this
has a Heegaard splitting consisting of a torus T2, with a single α and a single
β curve intersecting once transversally at x. Denote by s the unique Spin c-
structure on S3. Then the complex CF−(S3, s) has generators [x, i], i < 0,
and trivial boundary map (this has to vanish since the relative gradings are

even). This determines all the other groups; for example, ĤF (S3) ∼= Z.
There are many other Heegaard splittings for S3. Ozsvath–Szabo give an
example in [8, §2.2] of a genus 2 splitting where the differential ∂ depends

on the choice of complex structure j on Σ2. This might seem paradoxical.
The point is that the differential is given by counting holomorphic discs in
Symg(Σ), but as in diagram (2.1) these correspond to counting images in Σ
of some branched cover F of the disc, and these images can have nontrivial
moduli. This shows that Heegaard–Floer theory is not entirely combina-
torial: the next big advance might be the construction of combinatorial
invariants, possibly similar to Khovanov’s new knot invariants.

One can make various additional refinements to the theory. For example,
when Y is a rational homology sphere it is possible to lift the relative Z-
grading to an absolute Q-grading that is respected by the naturality maps
we discuss below: see [§3.2][8]. Ozsvath–Szabo also define knot invariants
in [7] and use them to give a new obstruction for a knot to have unknotting
number one.

2.2. Properties and Applications of the invariants. The power of
Heegaard–Floer theory comes from the fact that it is well adapted to cer-
tain natural geometric constructions in 3-manifold theory, such as adding a
handle or performing a Dehn surgery on a knot, because these have simple
descriptions in terms of Heegaard diagrams. Here is the basic geometric
construction.

Suppose given three sets α, β, γ of g disjoint curves on the Riemann surface
Σg that are the attaching circles for the handlebodies Uα, Uβ , Uγ . Then there
are three associated manifolds

Yα,β = Uα ∪ Uβ, Yα,γ = Uα ∪ Uγ , Yβ,γ = Uβ ∪ Uγ .

We now construct a 4-manifold X = Xαβγ with these three manifolds as
boundary components. Let ∆ be a triangle (or 2-simplex) with vertices
vα, vβ , vγ and edges eα, eβ , eγ (where eα lies opposite vα), and form X from
the four pieces(

∆ × Σ
) � (

eα × Uα

) � (
eβ × Uβ

) � (
eγ × Uγ

)
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by making the obvious identifications along ∂∆×Σ and then smoothing. For
example, the part eα ×Σ of ∂∆×Σ is identified with eα × ∂Uα: see Fig. 6.
The resulting manifold has three boundary components, one corresponding
to each vertex, with Yα,β lying over vγ = eα∩eβ for example. One can orient
X so that

∂X = −Yα,β − Yβ,γ + Yα,γ .

This elementary cobordism is called a pair of pants cobordism. Counting
holomorphic triangles in Mg with boundaries on the three tori Tα, Tβ, Tγ

gives rise under good circumstances to a map

(2.4) f∞ : CF∞(Yα,β, sα,β) ⊗ CF∞(Yβ,γ , sβ,γ) → CF∞(Yα,γ , sα,γ).

(Here the Spinc structures are assumed to extend to a common Spinc struc-
ture s on X.)

There are some interesting special cases of this construction. For example,
it can be used to obtain a long exact surgery sequence which is very
useful in analysing the effect of rational Dehn surgeries on Y . Here we shall
concentrate on explaining some of the corresponding naturality properties
of the theory.

Maps induced by cobordisms: Suppose that Y2 is obtained from Y1 by
doing a 0-surgery along a framed knot K. This means that we choose
an identification10 of a neighborhood N(K) with S1 × D2, attach one part
∂D2 ×D2 of the boundary of the 4-ball D2 ×D2 to Y1 via the obvious map

ψ : ∂D2 × D2 → S1 × D2 ≡ N(K) ⊂ Y1,

and then define Y2 to be a smoothed out version of the union

Y2 =
(
Y1 \ int N(K)

)
�ψ (D2 × S1),

where ψ identifies the boundary torus S1 × S1 in D2 × S1 to ∂N(K). Note
that the 4-manifold W =

(
[0, 1] × Y1

) �ψ (D2 ×D2) is a cobordism from Y1

to Y2 obtained by adding a 2-handle to [0, 1] × Y1 along N(K) ⊂ {1} × Y1.

10This is called a framing of the knot. It corresponds to choosing a pair of linearly
independent vector fields along K that trivialize its normal bundle. Note that any knot
in S3 has a canonical framing: because H2(S

3) = 0, K bounds an embedded surface S in
S3 and one can choose the first vector field to be tangent to S.
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Given a knot K in Y1, one can always choose a Heegaard diagram (Σ, α, β)
for Y1 so that K lies in the surface Σ−β2−· · ·−βg (and is given the obvious
framing) and intersects β1 once transversally. Pushing K into Uβ, one sees
that this is equivalent to requiring that K is disjoint from the discs Dj with
boundary βj for j > 1 and meets D1 transversally in a single point. Hence
one can construct a suitable diagram by starting with a neighborhood N(K)
of the knot and then adding 1-handles to obtain Uβ. Since doing 0-surgery
along K adds a disc with boundary K, it is easy to check that

Y2 = Yα,γ , γ := {K,β2, . . . , βg}.
Further Yβ,γ is a connected sum #(S2 × S1) of copies of S2 × S1, and so is
standard. Pairing the map f∞ in equation (2.4) with a canonical element
in HF∞(Yβ,γ) one obtains a map

f∞ : HF∞(Y1; s1) → HF∞(Y2; s2)

for suitable si.
This construction can be extended to any cobordism.

Lemma 2.3. Suppose that X is an oriented connected cobordism from Y1

to Y2, where each Yi is an oriented connected 3-manifold. Then, for each

Spin c structure s on X there is a natural induced map

F∞
X,s : HF∞(Y1, s1) → HF∞(Y2, s2),

where si is the restriction of s to Yi.

There are corresponding maps for the other groups HF±, ĤF and so on.
All of them have the obvious functorial properties, behaving well for example
under compositions of cobordisms. Another important property is that the
image of the induced map

F−
X,s : HF−(Y1, s1) → HF−(Y2, s2)

is contained in HFred if b+
2 (X) ≥ 1. (This is the first appearance so far

of this condition11 on b+
2 which is so ubiquitous in Seiberg–Witten theory.)

In other words, im F−
X,s is contained in the image of the boundary map

δ : HF+ → HF− in the long exact sequence (2.2).

A 4-manifold invariant: We now define an invariant ΦX,s of a closed
connected 4-manifold X with Spin c-structure s. Conjecturally it agrees
with the Seiberg–Witten invariant. Its construction illustrates the use of
the different groups HF .

Suppose that X is a closed connected 4-manifold with b+
2 (X) > 1 and

Spin c-structure s. (For example, any symplectic 4-manifold has a canonical
Spin c-structure.) An admissible cut of X is a decomposition of X into

11Given a connected, oriented 4-manifold X, b+
2 (X) is the number of positive squares

in the diagonalization of the cup product pairing on H2(X, ∂X). The relevant fact here
is that when b+

2 (X) ≥ 1 there is a closed surface C in X with self-intersection C · C ≥ 0.
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two pieces X1,X2, each with b+
2 (Xi) ≥ 1, along a 3-manifold Y := X1 ∩X2.

We assume also that the restriction map

H2(X) → H2(X1) ⊕ H2(X2)

is injective. Delete small 4-balls from the interior of each piece Xi and
consider them as giving cobordisms from S3 to Y . Then, for a certain
canonical element θ ∈ HF−(S3), consider

ΦX,s :=
〈
δ−1 ◦ F−

X1,s1
θ, F−

X2,s2
θ
〉
,

where we use the pairing (2.3) on HFred(Y, s). This element turns out to be
independent of choices and nonzero for symplectic manifolds. (In this case
it can be calculated using a decomposition of X coming from a Donaldson–
Lefschetz pencil.) Hence in any admissible cut of a symplectic manifold,
HFred(Y ) must be nonzero. Ozsvath–Szabo conclude in [6] that:

Proposition 2.4. A connected closed symplectic 4-manifold X has no ad-

missible cut X = X1 ∪ X2 such that Y := X1 ∩ X2 has HFred(Y, s) = 0 for

all s.

The first proof of this was in the case Y = S3 and is due to Taubes.
He combined the well known fact that gauge theoretic invariants vanish on
connected sums together with his proof that the Seiberg–Witten invariants
do not vanish on symplectic 4-manifolds.

Rational homology 3-spheres Y for which HF+ has no torsion and where
HFred(Y, s) = 0 for all s are called L-spaces in [8, §3.4]. All lens spaces
are L-spaces, but not all Brieskorn homology spheres are: Σ(2, 3, 5) is an L-
space, but Σ(2, 3, 7) is not. The class of L-spaces is not yet fully understood,
but it has interesting geometric properties. For example it follows from the
above proposition that L-spaces do not support any taut foliations, i.e. foli-
ations in which the leaves are minimal surfaces for some Riemannian metric
on Y ; for if Y supports such a foliation then results of Thurston, Eliash-
berg, Giroux and Etnyre about contact structures allow one to construct a
symplectic manifold X that has an admissible cut with Y = X1 ∩ X2.

As a final corollary, we point out that similar arguments imply that
Heegaard–Floer theory can detect the unknot in S3. This means the
following. Suppose that K is a knot in S3 and denote by S3

0(K) the result
of doing 0-surgery along K with the canonical framing described above.

Corollary 2.5. If HF (S3
0(K)) = HF (S3

0(unknot)) then K is the unknot.

Sketch of proof. Let Y = S3
0(K). Suppose that Y �= S3

0(unknot) = S2 × S1.
By a deep result of Gabai, Y admits a taut foliation. As above, this implies
that HFred(Y, s) �= 0 for some s. But HFred(S

2 × S1, s) is always 0. �
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Abstract

The title of this paper comes from Poincaré, who introduced many
key dynamical systems methods through his study of celestial mechan-
ics and especially the three body problem. Since then, many researchers
have contributed to his legacy by developing and applying these meth-
ods to problems in celestial mechanics and, more recently, with the
design of real space missions. This paper will give a survey of some of
these exciting ideas. In an upcoming monograph Koon, Lo, Marsden,
and Ross [2005], this approach and its application to real missions is
discussed in detail.

One of the key ideas is that the competing gravitational pull between
celestial bodies creates a vast array of passageways that wind around
the sun, planets and moons. These passageways are realized geometri-
cally as invariant manifolds attached to equilibrium points and periodic
orbits in interlinked three body problems. In particular, tube-like struc-
tures form an interplanetary transport network which will facilitate the
exploration of Mercury, the Moon, the asteroids, and the outer solar
system, including a mission to assess the possibility of life on Jupiter’s
icy moons.

1
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1 Astrodynamics and Dynamical Astron-

omy

Astrodynamics and dynamical astronomy apply the principles of me-
chanics, including the law of universal gravitation to the determination
of the motion of objects in space. Orbits of astronomical bodies, such
as planets, asteroids, and comets are calculated, as are spacecraft tra-
jectories, from launch through atmospheric re-entry, including all the
needed orbital maneuvers.

While there are no sharp boundaries, astrodynamics has come to
denote primarily the design and control of spacecraft trajectories, while
dynamical astronomy is concerned with the motion of other bodies in
the solar system (origin of the moon, Kuiper belt objects, etc). From
a dynamical systems perspective of interest to us, it is quite useful to
mix these subjects. There is one obvious commonality: the model used
for studying either a spacecraft or, say, the motion of an asteroid is the
restricted N + 1 body problem, where N celestial bodies move under
the influence of one another and the spacecraft or asteroid moves in the
field of these bodies, but has a mass too small to influence their motion.

The Ephemeris and Its Approximations. In the case of mo-
tion within the solar system, the motion of the N bodies (planets,
moons, etc) can be measured and predicted to great accuracy, pro-
ducing an ephemeris. An ephemeris is simply a listing of positions and
velocities of celestial bodies as a function of time with respect to some
coordinate system. An ephemeris can be considered as the solution
of the N -body gravitational problem, and forms the gravitational field
which determines a spacecraft or asteroid’s motion.

While the final trajectory design phase of a space mission or the
long term trajectory of an asteroid will involve a solution considering
the most accurate ephemeris, insight can be achieved by considering
simpler, approximate ephemerides (the plural of ephemeris). An exam-
ple of such an ephemeris is a simplified solution of the N -body problem,
where N is small, for example, the motion of the Earth and Moon under
their mutual gravitation, a two-body solution. The simplest two-body
solution of massive bodies which gives rise to interesting motion for a
spacecraft is the circular motion of two bodies around their common
center of mass. The problem of the spacecraft’s motion is then known
as the circular restricted three-body problem, or the CR3BP.

Introduction to the Trajectory Design Problem. The set
of possible spacecraft trajectories in the three-body problem can be
used as building blocks for the design of spacecraft trajectories in the
presence of an arbitrary number of bodies. Consider the situation shown
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in Figure 1.1, where we have a spacecraft, approximated as a particle,
P , in the gravitational field of N massive bodies. We assume P has
a small enough mass that it does not influence the motion of the N
massive bodies, which move in prescribed orbits under their mutual
gravitational attraction. In the solar system, one can think of a moon,
M2, in orbit around a planet, M1, which is in orbit around the Sun,
M0.

M0

M1

M2

P

Figure 1.1: A spacecraft P in the gravitational field of N massive bodies which move in
prescribed orbits.

The goal of trajectory design is to find a transfer trajectory, such
as the one shown in Figure 1.2(a), which takes the spacecraft from a

P P

t1,∆v1

ti,∆vi

(a) (b)

Figure 1.2: (a) The goal is to find a transfer trajectory which takes the spacecraft from
an initial orbit to a final orbit using controls. (b) Assuming impulsive controls, i.e., several
instantaneous changes in the spacecraft’s velocity, with norm ∆vi at time ti, we can effect
such a transfer.

prescribed initial orbit to a prescribed final orbit using controls. The
initial orbit may be an orbit around the Earth and the final orbit an
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orbit around one of the moons of Jupiter, for instance. To effect this
transfer, we could use high thrust or low thrust propulsion systems. In
the low thrust case, we have a small continuous control which can op-
erate at all times. In the high thrust case, we assume that the control
is discretized into several instantaneous changes in the spacecraft’s ve-
locity. These instantaneous changes have a magnitude at time ti that
is traditionally denoted ∆vi. Under a high thrust assumption, the ∆v’s
are proportional to the fuel consumption:

∆v = −ve
∆m

m

where m is the mass of the rocket and ∆m is the mass of propellant
ejected at an exhaust velocity ve (Roy [1988]). As spacecraft are limited
in the amount of fuel that they can carry on-board for their journey, we
often want to consider an optimal control problem: minimize the fuel
consumed (equivalently, energy). In other words, we want to find the
maneuver times ti and sizes ∆vi to minimize∑

i

∆vi,

the total change in velocity, or “∆V ” as it is called.
It is typical in space missions to use the magnitude of the required

∆V as a measure of the spacecraft fuel performance. The propellant
mass is a much less stable quantity as a measure of spacecraft perfor-
mance, since it is dependent on the spacecraft mass and various other
parameters which change frequently as the spacecraft is being built.
The ∆V comes from astrodynamics considerations only and is inde-
pendent of the mass and type of spacecraft. Thus, for a given mission
objective, one generally wants to minimize ∆V .

2 The Patched Three-Body Approxi-

mation

To get a spacecraft from, say, Earth to other parts of the solar system, it
is necessary to find solutions for the motion of the spacecraft under the
influence of N bodies, a notoriously difficult problem. Furthermore, one
needs to find solutions with a desired behavior, e.g., flying by the giant
outer planets as Voyagers 1 and 2 did, while satisfying engineering con-
straints, e.g., low fuel consumption, short time of flight, low radiation
dose, etc.

Patched-Conic Approach and the Voyager Trajectory. For
many purposes it is satisfactory to simplify the general trajectory prob-
lem by considering the gravitational force between the spacecraft and
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only one other body at a time. Even for the case of interplanetary
transfer, this simplification will suffice for many calculations. That is,
one may consider escape from or capture by a planet to be an interac-
tion between the spacecraft and that particular planet alone, whereas
the transfer process is considered an interaction between the spacecraft
and the Sun alone. NASA’s spectacular multiple flyby missions such
as Voyager and Galileo are based on this Keplerian decomposition of
the solar system, known as the patched-conic approximation (or patched
two-body approximation), discussed in Bate, Mueller, and White [1971].

The strategy of the designers of the Voyager missions was to initially
approximate the full N -body solution of the spacecraft’s motion as a
linkage of several two-body solutions, the well known conic solutions
discovered by Kepler. The spacecraft’s trajectory as it coasted between
two planets was considered as a heliocentric hyperbolic trajectory. The
heliocentric trajectory was cleverly chosen to come close to the desti-
nation planet, in order to fly by it. When the spacecraft came within
the “sphere of influence”1 of a planet, it was considered as a hyperbolic
conic section trajectory centered on the planet. This patched-conic so-
lution could be used as an initial guess for a numerical procedure which
produced a fully integrated N -body solution.

High vs. Low Relative Velocities. For missions such as Voyager
and Galileo, the speed of the spacecraft relative to the bodies is high
and therefore the time during which the acceleration on the spacecraft
due to two bodies is comparable is very short, and results in a minor
perturbation away from a conic solution. But when one needs to deal
with the unpropelled, or ballistic, capture regime of motion,2 where the
relative speed is low, a three-body decomposition of the solar system is
necessary.

Some Missions Cannot Be Approximated by the Patched-
Conic Approach. For Voyager and Galileo, the patched-conic ap-
proach worked very well. But as space missions have become more
demanding, other approaches have become necessary. For example,
the Genesis, L1 Gateway, and multi-moon orbiter trajectories discussed
below resemble solutions of the restricted three- and four-body prob-
lems much more than two-body problems. In fact, methods based
on a patched-conic approximation would have a very difficult time
finding these complicated trajectories, as they are fundamentally non-
Keplerian, restricted N -body solutions.

1The sphere of influence of a planet is the radius at which the acceleration on a spacecraft
due to the planet and the Sun are approximatedly equal (Roy [1988]).

2Ballistic capture means that no propulsion is necessary (i.e., no ∆V ) to achieve a capture
orbit at the destination body. In general, this “capture” is temporary.
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Taking Better Advantage of N-Body Dynamics. It is pos-
sible to satisfy mission constraints using spacecraft solutions which do
not take advantage of the N -body dynamics of a system. But this may
require using more fuel than is necessary.3 Worse yet, because of the
fuel restrictions on interplanetary spacecraft, some missions may not
be possible if only a patched-conic approach is used. An interesting
example in this category, which also served as motivation for much of
our group’s work, is the “rescue” of a malfunctioned Japanese space
mission to the moon by Belbruno and Miller of JPL in June, 1990. The
mission originally had two spacecraft, MUSES-A and MUSES-B; B was
to go into orbit around the moon, with A remaining in earth orbit as a
communications relay. But B failed and A did not have sufficient fuel
to make the journey. However, by utilizing a trajectory concept orig-
inally discovered by Belbruno in 1986, which is more energy-efficient
than the one planned for B, MUSES-A (renamed Hiten) left Earth or-
bit in April, 1991 and reached the moon that October. As a result,
Japan became the third nation to send a spacecraft to the moon. After
a series of scientific experiments, Hiten was purposely crashed into the
Moon in April, 1993. See Belbruno [2004] for additional details of this
fascinating story.

An ESA (European Space Agency) mission currently underway, SMART-
1, which is a mission from the Earth to the Moon, also uses some
of these same ideas; see http://sci.esa.int/science-e/www/area/
index.cfm?fareaid=10.

A Hierarchy of Models. We want to make use of the natural dy-
namics in the solar system as much as possible; that is, we wish to take
advantage of the phase space geometry, integrals of motion, and lanes of
fast unpropelled travel. We envision generating a trajectory via a hier-
archy of models. One starts with simple models which capture essential
features of natural dynamics. One then uses simple model solutions as
initial guess solutions in more realistic models. The approach described
above does this conceptually, using the patched-conic approximation
to generate the first guess solution. But there are regimes of motion
where conics are simply not a good approximation to the motion of the
spacecraft. There is much to be gained by starting with not two-body
solutions, but three-body solutions to the spacecraft’s motion.

The Patched Three-Body Approximation. Motivated by the
Belbruno and Miller work, we consider a restricted four-body problem

3For example, Dunn [1962] proposed to use a satellite for lunar far side communications
by placing it in a position where it would requre approximately 1500 m/s per year for
stationkeeping. A few years later, Farquhar [1966] proposed a trajectory for the same
mission which used only 100 m/s per year by taking advantage of three-body dynamics.
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wherein a spacecraft moves under the influence of three massive bodies
whose motion is prescribed, as shown schematically in Figure 1.1. For
Belbruno and Miller, these four bodies were the Sun, the Earth, the
Moon and the spacecraft.

To begin with, we restrict the motion of all the bodies to a com-
mon plane, so the phase space is only four-dimensional. As in the
patched-conic approach, the patched three-body approach uses solu-
tions obtained from two three-body problems as an initial guess for a
numerical procedure which converges to a full four-body solution.

As an example of such a problem where there is no control, con-
sider the four-body problem where two adjacent giant planets compete
for control of the same comet (e.g., Sun-Jupiter-comet and Sun-Saturn-
comet). When close to one of the planets, the comet’s motion is dom-
inated by the corresponding planet’s 3-body dynamics. Between the
two planets, the comet’s motion is mostly heliocentric and Keplerian,
but is precariously poised between two competing three-body dynam-
ics, leading to complicated transfer dynamics between the two adjacent
planets.

When we consider a spacecraft with control instead of a comet, we
can intelligently exploit the transfer dynamics to construct low energy
trajectories with prescribed behaviors, such as transfers between adja-
cent moons in the Jovian and Saturnian systems (Lo and Ross [1998]).
For example, by approximating a spacecraft’s motion in the N +1 body
gravitational field of Jupiter and N of its planet-sized moons into sev-
eral segments of purely three body motion—involving Jupiter, the ith
moon, and the spacecraft—we can design a trajectory for the space-
craft which follows a prescribed itinerary in visiting the N moons. In
an earlier study of a transfer from Ganymede to Europa, we found our
fuel consumption for impulsive burns, as measured by the total norm of
velocity displacements, ∆V , to be less than half the Hohmann transfer
value (Koon, Lo, Marsden, and Ross [1999]). We found this to be the
case for the following example multi-moon orbiter tour shown schemat-
ically in Figure 2.1: starting beyond Ganymede’s orbit, the spacecraft
is ballistically captured by Ganymede, orbits it once, escapes in the
direction of Europa, and ends in a ballistic capture at Europa.

One advantage of this multi-moon orbiter approach as compared
with the Voyager-type flybys is the “leap-frogging” strategy. In this
new approach to mission design, the spacecraft can orbit a moon for
a desired number of circuits, escape the moon, and then perform a
transfer ∆V to become ballistically captured by a nearby moon for some
number of orbits about that moon, etc. Instead of brief flybys lasting
only seconds, a scientific spacecraft can orbit several different moons
for any desired duration. Furthermore, the total ∆V necessary is much
less than that necessary using purely two-body motion segments. One
can also systematically construct low energy transfers from the Earth to



2 The Patched Three-Body Approximation 8

Jupiter

Europa's
Orbit

Ganymede's
Orbit

Spacecraft
Trajectory

Capture
at Europa

Figure 2.1: Leap-frogging mission concept: a multi-moon orbiter tour of Jupiter’s moons
Ganymede and Europa.

the Moon using the Sun’s perturbation, and from lunar libration point
orbits to Earth libration point orbits.

Three-Body Dynamics. To patch three-body solutions (the space-
craft’s motion in the presence of two bodies), one needs a good handle
on what those solutions are. Studying the CR3BP solutions in detail is
an interesting topic in its own right. This is a topic that goes back to
the basic work of Poincaré in the late 1800s and provided the context in
which he developed modern dynamical systems theory and the notion
of chaos.

In the CR3BP, we thus have two primaries that move in circles;
the smaller third body moves in the gravitational field of the primaries
(without affecting them). We typically view the motion in a rotating
frame so that the primaries appear stationary. It is important to con-
sider both the planar and the spatial problems, but we shall focus on
the planar problem for the moment.

One may derive the equations of motion using a little elementary
mechanics as follows. Let the masses of the two primaries be denoted
m1 and m2 and set µ = m2/(m1 + m2). We can normalize the dis-
tance between the primaries to be unity and then in the rotating frame,
normalized to rotate with unit angular velocity, the two bodies may
be located on the x-axis at the points (−µ, 0) and (1 − µ, 0). Let the
position of the third body be denoted (x, y) in the rotating frame. The
kinetic energy of this third body (whose mass we take to be unity) with
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with respect to an inertial frame but written in a frame rotating with
unit angular velocity is the usual 1

2mv2 expression:

K(x, y, ẋ, ẏ) =
1
2

[
(ẋ− y)2 + (ẏ + x)2

]
Let r1 be the distance from the third body to the first primary; that is,
r1 =

√
(x + µ)2 + y2 and let r2 be the distance to the second primary,

that is, r2 =
√

(x− 1 + µ)2 + y2). Then the gravitational potential
energy of the third body is, again in normalized units,

V (x, y) = −1− µ

r1
− µ

r2
.

The Lagrangian of the third body is its kinetic minus potential energies,
namely

L(x, y, ẋ, ẏ) = K(x, y, ẋ, ẏ)− V (x, y);

Now one gets the equations of motion simply by writing down the cor-
responding Euler-Lagrange equations:

ẍ− 2ẏ = −∂V

∂x
, ÿ + 2ẋ = −∂V

∂y
(2.1)

where the effective potential is

V = V − x2 + y2

2

Being Euler–Lagrange equations, there is a conserved energy that one
computes via the Legendre transformation to be

E =
1
2

(
ẋ2 + ẏ2

)
+ V (x, y).

Equilibria. These occur when the the third body moves in a circular
orbit with the same frequency as the primaries, so that it is stationary
in the rotating frame. We find these points by finding the equilibrium
points, in the standard sense of ode’s, of the equations (2.1). It is clear
that this task is equivalent to finding the critical points of the effective
potential, an analysis that is found in every book on celestial mechanics.
The result is that there are five such points. There are three collinear
points on the x-axis that were discovered by Euler around 1750 and are
denoted L1, L2, L3 and there are two equilateral points discovered by
Lagrange around 1760 and are denoted L4, L5. They are indicated in
Figure 2.2.

Equations (2.1) may be interpreted as those of a particle moving in
an effective potential plus a magnetic field. Its graph is shown in Figure
2.3. This figure also shows the region one gets by imposing conservation
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Figure 2.2: Equilibrium points for the three body problem.

of energy and the simple inequality that the kinetic energy is positive.
Thus, at a given energy level E, the third body can only move in the
region given by the inequality E−V ≥ 0; this is called the Hill’s region
and is obtained by intersecting the graph of the effective potential with
a horizontal plane. An example is shown in the right hand side of
Figure 2.3 for the Sun-Jupiter-third body system. In this figure, one
can see three realms, namely the Sun realm, the Jupiter realm and the
exterior realm that are connected by the neck regions, the left hand neck
containing L1 and the right hand neck containing L2. For other values
of the energy, one or more of these realms may be prohibited due to
conservation of energy; that is, the necks may close off.

Of special interest are the two points L1 and L2 closest to the sec-
ondary body, which a linearized analysis shows are center-saddle points.
The famous Liapunov theorem says that there is a family of periodic or-
bits surrounding each of these points; one can think of this as meaning
that one can “go into orbit about these points”. These planar peri-
odic orbits are called Liapunov orbits, while their counterparts in the
3D problem are called halo and Lissajous orbits (which, by the way
involves an interesting bifurcation analysis).

Tubes. In the 3 body problem, a key role is played by the invariant
manifolds of these periodic orbits, which we call the Conley-McGehee
tubes. Also key is a network of homoclinic and heteroclinic orbits con-
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S J

Effective Potential Level set shows the Hill region

Figure 2.3: The graph of the effective potential in the 3-body problem. Its critical points
are the equilibria.

necting these periodic orbits, also discovered in a preliminary way in
work of Conley and McGehee and was extended and thoroughly inves-
tigated in Koon, Lo, Marsden, and Ross [2000]. Some of the reasons
that these tubes are important can be seen in the context of specific
space missions described below.

In fact, the invariant manifold structures of L1 and L2 provide the
framework for understanding and categorizing the motions of space-
craft as well as, for example, comets that undergo resonance hopping.
Moreover, the stable and unstable invariant manifold tubes associated
to periodic orbits around L1 and L2 are the phase space conduits trans-
porting material between different realms in a single three body system
as well as between primary bodies for separate three-body systems.
These tubes can be used to construct new spacecraft trajectories as we
will indicate below. It is remarkable that the connecting orbits as well
as the associated Conley-McGehee tubes are critical for understanding
transport in the solar system as well as in molecular systems. It is
quite interesting that some of the same techniques used in the celestial
context can also be used in the molecular context, and conversely, tech-
niques from Chemistry can be used in celestial problems, as was done
in Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002].

Figure 2.4 shows some tubes (projected from phase space to con-
figuration space) associated with periodic orbits about L1, L2 for the
Earth-Moon system. As this figure indicates, it is the tubes that con-
trol the capture and escape properties as well as transit and non-transit
orbits.



2 The Patched Three-Body Approximation 12

Moon

L2
Ballistic 

Capture Into 
Elliptical Orbit

Earth
L2 

orbit

Moon

P

Figure 2.4: Tube leading to ballistic capture around the Moon (seen in rotating frame).

Some Specific Missions. For the complex space missions planned
for the near future, greater demands are placed on the trajectory de-
sign. In many instances, standard trajectories and classical methods
such as the patched two-body approximation are inadequate to sup-
port the new mission concepts. Without appropriate and economical
trajectories, these missions cannot be achieved. For nearly half a cen-
tury, space mission planners have depended on trajectory concepts and
tools developed in the 1950s and 1960s, based largely on a two-body de-
composition of the solar system, the “patched conics” approach. While
that approach remains very valuable for some missions, new trajectory
paradigms must be developed to meet today’s challenges.

A detailed understanding of the three-body problem, and in particu-
lar the dynamics associated with libration points, is absolutely necessary
to continue the exploration and development of space.

Figure 2.5 shows in metro map format connections between hubs in
Earth’s neighborhood and beyond. NASA desires to develop a robust
and flexible capability to visit several potential destinations. As shown
in the figure, NASA has recognized that libration points L1 and L2

in the Sun-Earth and Earth-Moon system are important hubs and/or
destinations. The fortuitous arrangement of low energy passageways in
near-Earth space implies that lunar L1 and L2 orbits are connected to
orbits around Earth’s L1 or L2 via low energy pathways.4 Therefore, a
Lunar Gateway Station at the lunar L1 would be a natural transporta-
tion hub to get humanity beyond low-Earth orbit, a stepping stone to
the moon, Earth’s neighborhood, Mars, the asteroids, and beyond. We

4We will sometimes refer to the Sun-Earth L1 and L2 as the Earth’s L1 and L2, since
they are much closer to the Earth than the Sun. Similarly, we will occasionally refer to the
Earth-Moon L1 and L2 as the lunar or the Moon’s L1 and L2.
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will discuss the Lunar L1 Gateway Station further below.
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Figure 2.5: A metro map representation showing hubs connected by low energy passage-
ways in the near-Earth neighborhood and beyond (source: Gary L. Martin, NASA Space
Architect).

Because of its unobstructed view of the sun, the Sun-Earth L1 is a
good place to put instruments for doing solar science. NASA’s Gene-
sis Discovery Mission has been there, the first space mission designed
completely using invariant manifolds and other tools from dynamical
systems theory (Howell, Barden, and Lo [1997]). The Solar and Helio-
spheric Observatory (SOHO),5 a joint project of the European Space
Agency and NASA, and NASAs WIND and the Advanced Composition
Explorer (ACE) are also there.

Genesis Discovery Mission. Launched in August 2001, the Gen-
esis Discovery Mission spacecraft swept up specks of the sun—individual
atoms of the solar wind—on five collector arrays the size of bicycle tires
and in an ion concentrator. The goal was to collect solar wind sam-
ples and return them safely to the Earth for study into the origins of
the solar system. Genesis returned its solar wind cargo to Earth via a
sample-return capsule which returned to Earth in September 2004 (see

5SOHO is a spacecraft mission designed to study the internal structure of the Sun, its
extensive outer atmosphere and the origin of the solar wind, the stream of highly ionized
gas that blows continuously outward through the solar system. It is a joint project of
the European Space Agency (ESA) and NASA. See http://soho.estec.esa.nl for more
information.
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Lo, Williams, Bollman, Han, Hahn, Bell, Hirst, Corwin, Hong, Howell,
Barden, and Wilson [2001]).6 The sample was the only extraterrestrial
material brought back to Earth from deep space since the last of the
Apollo landings in 1972, and the first to be collected from beyond the
moon’s orbit.

A reason Genesis was feasible as a mission is that it was designed
using low energy passageways. Figure 2.6 shows a three-dimensional
view of the Genesis trajectory (kindly supplied by Roby Wilson). The
spacecraft was launched to a halo orbit in the vicinity of the Sun-Earth
L1 and uses a “heteroclinic-like return” in the three-body dynamics to
return to Earth.7
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Figure 2.6: The Genesis Discovery Mission trajectory. The three arrows correspond to
the three projections shown in Figure 2.7.

As noted above, L1 is the unstable equilibrium point between the
Sun and the Earth at roughly 1.5 million km from the Earth in the
direction of the Sun. Genesis took a low energy path to its halo orbit,
stayed there collecting samples for about 2 years, and returned home
on another low energy path.

6See http://genesismission.jpl.nasa.gov/ for further information.
7The orbit is called a “halo orbit” because, as seen from Earth, the flight path follows a

halo around the sun. Such orbits were originally named for lunar halo orbits by Farquhar
[1968]. By the way, setting a spacecraft exactly to the L1 point is not a good idea, as the
spacecraft’s radio signals would be lost in the Suns glare.
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Figure 2.7 shows three orthographic projections of the Genesis tra-
jectory. These figures, plotted in a rotating frame, show the key parts
of the trajectory: the transfer to the halo, the halo orbit itself, and the
return to Earth. The rotating frame is defined by fixing the x-axis along
the Sun-Earth line, the z-axis in the direction normal to the ecliptic,
and with the y-axis completing a right-handed coordinate system. The
y-amplitude of the Genesis orbit, which extends from the x-axis to the
maximum y-value of the orbit, is about 780,000 km (see Figures 2.6 and
2.7). Note that this is bigger than the radius of the orbit of the Moon,
which is about 380,000 km.
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Figure 2.7: The xy, xz, and yz projections of the three dimensional Genesis trajectory
shown in the preceding figure.

As Figures 2.6 and 2.7 show, the trajectory travels between neigh-
borhoods of L1 and L2; L2 is roughly 1.5 million km on the opposite
side of the Earth from the Sun. In dynamical systems theory, this is
closely related to the existence of a heteroclinic connection between the
L1 and L2 regions.
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The deeper dynamical significance of the heteroclinic connection for
the planar three-body problem is that it allows a classification and a
construction of orbits using symbolic dynamics, as was shown in Koon,
Lo, Marsden, and Ross [2000], and similar phenomena are seen when
the third degree of freedom is included, as discussed in Gomez, Koon,
Lo, Marsden, Masdemont, and Ross [2004].

One of the attractive and interesting features of the Genesis tra-
jectory design is that the three year mission, from launch all the way
back to Earth return, requires no deterministic maneuver whatsoever
and automatically injects into the halo orbit.

It is difficult to use traditional classical algorithms8 to find a near-
optimal solution like that of Genesis, so the design of such a low energy
trajectory is facilitated by using dynamical systems methods. This is
achieved by using the stable and unstable manifolds as guides in de-
termining the end-to-end trajectory. That Genesis performs its huge
exotic trajectory using a deterministic ∆V of zero (i.e., no fuel) has
created a great deal of interest in both the astronautical and mathe-
matical communities.

Lunar L1 Gateway Station. The work on Genesis has inspired
deeper exploration of the dynamics in Earth’s neighborhood (see Lo and
Ross [2001]). NASA desires to develop a robust and flexible capability
to visit several potential destinations, as suggested by the metro map,
Figure 2.5. A Lunar Gateway Station in the vicinity of the lunar L1

libration point (between the Earth and the Moon) was proposed as
a way station for transfers into the solar system and into the Earth-
Sun halo orbits. This is enabled by an historical accident: the energy
levels of the Sun-Earth L1 and L2 points differ from those of the Earth-
Moon system by only 50 m/s (as measured by maneuver velocity). The
significance of this coincidence to the development of space cannot be
overstated. For example, this implies that the lunar L1 halo orbits
are connected to halo orbits around Earth’s L1 and L2 via low energy
pathways, as illustrated in Figure 2.8.

Many of NASA’s future space observatories located around the Earth’s
L1 or L2 may be built in a lunar L1 orbit and conveyed to the final des-
tination with minimal propulsion requirements. When the spacecraft
or instruments require servicing, they may be returned from Earth li-
bration orbits to the lunar L1 orbit where human servicing may be
performed, which was shown to be of vital importance for keeping the
Hubble Space Telescope operable. Since a lunar L1 orbit may be reached
from Earth in only three days, the infrastructure and complexity of
long-term space travel is greatly mitigated. The same orbit could reach

8See, for example, Farquhar and Dunham [1981], Farquhar, Muhonen, Newman, and
Heuberger [1980], and Farquhar, Muhonen, and Richardson [1977].
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(a) (b)

Figure 2.8: (a) The fortuitous arrangement of low energy passageways in near-Earth space
implies that lunar L1 and L2 halo orbits are connected to halo orbits around Earth’s L1

or L2 via low energy pathways. Many of NASA’s future space telescopes located around
the Earth’s L1 or L2 may be built in a lunar L1 orbit and conveyed to the final destination
with minimal fuel requirements. (b) Shown in this close-up are two halo orbits at the lunar
L1 and L2, respectively, and the set of invariant manifolds that provide the low energy
departures from the lunar L1 orbit.

any point on the surface of the Moon within hours, making it a per-
fect location for the return of humans to the Moon. A lunar L1 orbit is
also an excellent point of departure and arrival for interplanetary flights
to Mars, the asteroids, and the outer solar system. Several lunar and
Earth encounters may be added to further reduce the launch cost and
open up the launch period. A lunar L1 is therefore a versatile hub for
a space transportation system.

Multi-Moon Orbiters. Using low energy passageways is in no way
limited to the inner solar system. For example, consider a spacecraft in
the gravity field of Jupiter and its planet-sized moons. A possible new
class of missions to the outer planet moon systems has been proposed
by (Koon, Lo, Marsden, and Ross [1999]; Ross, Koon, Lo, and Marsden
[2003]). These are missions in which a single spacecraft orbits several
moons of Jupiter (or any of the outer planets), allowing long duration
observations. Using this multi-moon orbiter approach, a single scientific
spacecraft orbits several moons of Jupiter (or any of the outer planets)
for any desired duration, allowing long duration observations instead of
flybys lasting only seconds. For example, a multi-moon orbiter could
orbit each of the galilean moons—Callisto, Ganymede, Europa, and Io—
one after the other, using a technologically feasible amount of fuel. This
approach should work well with existing techniques, enhancing trajec-
tory design capabilities for missions such as NASA’s proposed Jupiter
Icy Moons Orbiter. Figure 2.9 shows a low energy transfer trajectory
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Figure 2.9: A multi-moon orbiter space mission concept for the Jovian moons. (a) We
show a spacecraft trajectory coming into the Jupiter system and transferring from Ganymede
to Europa using a single impulsive maneuver, shown in a Jupiter-centered inertial frame.
(b) The spacecraft performs one loop around Ganymede, using no propulsion at all, as
shown here in the Jupiter-Ganymede rotating frame. (c) The spacecraft arrives in Europa’s
vicinity at the end of its journey and performs a final propulsion maneuver to get into a
high inclination circular orbit around Europa, as shown here in the Jupiter-Europa rotating
frame.

from an initial Jovian insertion trajectory to Ganymede. After one or-
bit around Ganymede including a close approach, the spacecraft heads
onward to Europa, ending in a high inclination orbit around the icy
moon.

3 Transport in the Solar System

As we have indicated, there are many phenomena in the solar sys-
tem that involve interesting transport processes. Examples include the
transport of Mars rocks to Earth (the rocks could be thrown into Mars
orbit by a meteor impact, for instance) and the transport of asteroids
and comets from outside of Jupiter’s orbit to inside of Jupiter’s orbit
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through the two Jupiter necks shown in Figure 2.3. Several comets,
such as Oterma did just that (this is described in Koon, Lo, Marsden,
and Ross [2000]).

For such processes, one can ask “what is the transport rate?” More
specifically, we might wish to compute what percentage of a random dis-
tribution on an appropriate energy shell after 1000 years will go from
outside of Jupiter’s orbit (the exterior realm) to inside (the Sun, or in-
terior, realm)? Similarly, what is the probability of transport of Kuiper
belt objects from outside of Neptune’s orbit to inside?

To study such questions, we need a few more tools from theoretical
and computational dynamical systems.

Poincaré Sections. For the planar 3-body problem, the energy sur-
faces are three dimensional. Thus, using a Poincaré surface of section
at fixed energy E, represents the system as a 2-dimensional area pre-
serving map. For example, in the Sun-Jupiter-third body system, we
might choose a section in the interior realm as shown in Figure 3.1.

L1 L2

Exterior Realm

Interior (Sun)
 Realm

Jupiter Realm

Forbidden Region
(at a particular energy level)

spacecraft

Poincare section

Figure 3.1: A Poincaré surface of section in the exterior realm of the Sun-Jupiter-third
body system.

Such a procedure then produces a standard Poincaré map picture,
as shown in Figure 3.2.

As we have indicated, and it is also important for transport in both
the celestial as well as the molecular context, is that these different
Poincaré sections are linked by the Conley-McGehee tubes.

MANGEN. To carry out the needed computations, software is of
course required. While there are lots of packages available, we shall con-
centrate on two of them. First of all, MANGEN (Manifold Generation)
computes, amongst many other things, invariant manifolds and trans-
port rates between different resonant regions using dynamical systems
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Figure 3.2: A Poincaré map produced by intersecting orbits with a Poincaré section.

methods, such as lobe dynamics (see Rom-Kedar and Wiggins [1990];
Meiss [1992]; Wiggins [1992]; Rom-Kedar [1999]).
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Figure 3.3: Unstable (red) and stable (green) manifolds comprising a homoclinic tangle
that bounds a resonant region.

While this software was originally developed for the study of fluid
systems (see Lekien [2003]), it has proved to be useful for astrodynam-
ics as well as in molecular systems! Mathematics of course provides the
common structures on the two areas that enables this. A sample com-
putation of invariant manifolds in a Poincaré section using MANGEN
in the astrodynamics area is shown in Figure 3.3.
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One of the interesting questions in dynamical astronomy is to ask
about the transport between various regions. Some resonant regions,
such at the one shown in Figure 3.4 for a region outside the orbit of
Jupiter have “leaky” boundaries due to homoclinic tangles. Using lobe
dynamics, MANGEN can compute the transport between such regions
and neighboring regions.

Figure 3.4: MANGEN can compute the transport rate between these two resonant regions
R1 and R2 in the Sun-Jupiter-third body system.

GAIO. A second piece of software that is very useful is GAIO (Global
Analysis of Invariant Objects); see Dellnitz, Froyland, and Junge [2001]
and Dellnitz and Junge [2002]. It uses a set-oriented methodology, tak-
ing a global point of view to compute sets of dynamical interest rather
than focusing on individual trajectories. The idea is to cover the region
of phase space with boxes and to refine using box subdivisions. A given
dynamical system is discretized using a map and then an associated
graph is constructed. The nodes are the box centers and edges connect
those nodes that are dynamically related. This set up allows one to
make use of techniques from graph theory, such as graph partitioning.

One of the key concepts in this area is the notion of an almost invari-
ant set (AIS), which corresponds to a set containing relatively long-lived
dynamical trajectories. An example of an (AIS) are the above resonance
regions. This notion is also important in, for example, biomolecules,
where it corresponds to molecular conformations.

There are two related ways to compute almost invariant sets. The
first is to use graph partitioning software such as party (Monien, Preis
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and Diekmann [2000]). The idea is to find efficient ways to cut the
graph so that the traffic flow (that is, the transport rate) across the
cut is minimized. A second method is the use of eigenfunctions of the
associated Perron Frobenius operator (the induced map on measures).
We refer to Dellnitz and Junge [2002] and to Dellnitz, Junge, Koon,
Lekien, Lo, Marsden, Padberg, Preis, Ross, and Thiere [2004] for a
survey of these methods and for further references. In either case, the
computation of transport rates between two AIS is naturally computed
within these set oriented methods.

Figure 3.5 shows the same resonance region as above, but computed
using GAIO.

Figure 3.5: Resonance region for the three body Sun Jupiter system computed using
GAIO.

In some circumstances, such as shown in Figure 3.6, GAIO and
MANGEN can work together to produce more efficient adaptive algo-
rithms.

Using these techniques, one gets very concrete answers for transport
rates. For example, it is shown in Dellnitz, Junge, Koon, Lekien, Lo,
Marsden, Padberg, Preis, Ross, and Thiere [2004] that there is a 5%
probability that a randomly chosen particle will go from one of these
regions to the other in 1,800 Earth years.

Mars Crossers. Figure 3.7 shows the data from the Hilda group
of asteroids and comets that lie between Jupiter and Mars in a belt
relatively close to Jupiter.

Figure 3.8 shows a Poincaré map for a cut chosen at an energy level
appropriate to the Hilda group and cutting across it. The coordinates
are x along the cut and ẋ the corresponding velocity. Also shown is the
Mars crosser line; i.e., the coordinates (x, ẋ) of points whose Keplerian
orbit with that initial condition will just graze the orbit of Mars. Hildas
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Figure 3.6: GAIO and MANGEN working together.

become Mars-crossers by going from the left of this curve, where they
usually reside, to the right of it.

As shown in Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg,
Preis, Ross, and Thiere [2004a], GAIO can locate the quasi-Hilda region
as one of the AIS in this three body problem. Drawing in the set
corresponding to the Mars crosser line, as shown in Figure 3.9, we can
then ask “what is the probability that, in a certain period of time, an
object in the quasi-Hilda region becomes a Mars crosser?” GAIO gives
rather concrete answers. It shows that the probability for a typical
particle to leave the quasi-Hilda region is around 6% after 200 iterates
of the map, which corresponds to a transit time between 2000 and 6000
Earth years, depending on the location of the particle within the quasi-
Hilda region.

But there is much more to the story, as shown in Figure 3.10. Look
now at all of the inner planet crosser curves and notice how they lie
in the middle of various of the Sun-Jupiter-third body almost invariant
sets (as computed by GAIO)! But the almost invariant sets are com-
puted just with the Sun-Jupiter-third body system, which in principle
is independent of the knowledge of the other planets. However, this
shows that these are not independent at all and it suggests that the
Jupiter system in fact drove the formation of the whole solar system.
Of course additional analysis and simulation are needed to make this
definitive. This does, however highlight one example of the many mir-
acles hidden in the solar system and the relations between the planets!
We are also hopeful that such ideas might be useful in the search for
Earth-like planets in other solar systems.
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Figure 3.7: Orbits of asteroids in the Hilda group. Jupiter is the large dot on the outer
dotted circle and Mars is the large dot on the inner dotted circle

Figure 3.8: A Poincaré map corresponding to a section cutting across the Hilda group.
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Abstract

A monumental project in graph theory was recently completed. The project, started by
Robertson and Seymour, and later joined by Thomas, led to entirely new concepts and a
new way of looking at graph theory.

The motivating problem was Kuratowski’s characterization of planar graphs, and a far-
reaching generalization of this, conjectured by Wagner: If a class of graphs is minor-closed
(i.e., it is closed under deleting and contracting edges), then it can be characterized by a
finite number of excluded minors. The proof of this conjecture is based on a very general
theorem about the structure of large graphs: If a minor-closed class of graphs does not
contain all graphs, then every graph in it is glued together in a tree-like fashion from graphs
that can almost be embedded in a fixed surface.

We describe the precise formulation of the main results, and survey some of its applica-
tions to algorithmic and structural problems in graph theory.

1 Introduction

Let us start with recalling Kuratowski’s Theorem [10]:

Theorem 1 A graph G is embedable in the plane if and only if it does not contain a subgraph
homeomorphic to the complete graph K5 or the complete bipartite graph K3,3.

K K
5 3,3

Figure 1: Excluded minors for planar graphs.

It is an immediate and natural question to ask if a similar result holds for other surfaces: can
one characterize graphs embedable in a fixed surface Σ by excluding subgraphs homeomorphic to
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graphs in a finite list? Studies concerning specific surfaces are somewhat discouraging: it seems
that the only surface besides the plane (or sphere) for which such a list (of 35 graphs) is known
is the projective plane. Nevertheless, the existence of a finite list was proved by Robertson and
Seymour [16].

Wagner formulated a fundamental conjecture (apparently only published in 1970 in a text-
book [31]), which extends this finite basis result to a much more general setting, namely charac-
terizing minor-closed classes of graphs. This conjecture was proved by Robertson and Seymour
in series of papers; the final version of the paper in which the proof is completed has just been
finished. This gives us the excuse to survey this monumental work.

A crucial element of the proof is a theorem about the structure of graphs not containing
a certain minor. Roughly speaking, it says that if a graph does not contain a certain minor,
then it is basically 2-dimensional. The exact statement of the theorem (section 4) will be more
complicated.

2 Minors and embeddings

Given a graph G, we consider the following three ways of reducing it:

(a) delete an edge;

(b) contract an edge;

(c) delete an isolated node.

Any graph G′ that can be produced from G by successive application of these reductions is
called a minor of G. (In particular, G is a minor of itself.) Every graph that is isomorphic to a
minor of G is also called a minor of G. A minor that is not isomorphic to G is called a proper
minor.

This notion fits well with many notions and problems graph theory studies. In fact, if a
graph theorist learns about property that is inherited minors, he or she knows that this property
is interesting from a graph theoretical point of view. Planarity of graphs is an example. We
can generalize this: the property of being embedable in any other fixed surface is inherited by
minors.

There are many simple but important graph properties minor closed (inherited by minors).
For example, being series-parallel: these are graphs that can be obtained from a single edge by
a sequence of parallel extensions (adding an edge parallel to an edge that already exists) and
series extensions (subdividing an edge by a new node).

Various topological properties of graphs are also often minor-closed. Every graph is embe-
dable in R

3, but we may impose additional conditions on such embeddings. For example, the
graph is linklessly embedable, if it has an embedding in which no two disjoint cycles of the graph
are linked. A similar notion is knotlessly embedable: these graphs have an embedding in 3-space
in which no cycle is knotted. Both these topological properties are minor-closed.
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3 Wagner’s conjecture

3.1 Excluded minor characterizations

Many important and deep theorems characterize minor-closed graph properties by “excluded
minors”. Kuratowski’s Theorem 1 is not directly of this form, but Wagner [30] reformulated it in
this way: he showed that instead of excluding K5 and K3,3 as subgraphs up to homeomorphism,
it is equivalent to exclude them as minors. Let us quote two further theorems, characterizing
minor-closed properties mentioned above. The first is due to Dirac [9]:

Theorem 2 A graph is series-parallel if and only if it has no K4 minor.

The second, much more difficult theorem was conjectured by Sachs and proved by Robertson,
Seymour and Thomas [24]:

Theorem 3 A graph is linklessly embedable if and only if it does not contain any of the seven
graphs in Figure 2 as a minor.

Figure 2: Excluded minors for linklessly embedable graphs (the “Petersen family”).

No such theorem is known for knotlessly embedable graphs, even though the main result to
be discussed implies that a finite family characterizing them does exist.

3.2 Statements of the theorem

We say that a class K of graphs is minor-closed, if for every G ∈ K every minor of G also belongs
to K.

Given a family of graphs {G1, G2, . . . }, we can consider the class K of graphs that do not
contain any of G1, G2, . . . as a minor. Trivially, this class is minor-closed; we’ll say that the
graphs G1, G2, . . . characterize K as excluded minors. It is also trivial that every minor-closed
family can be characterized by excluded minors: just list all graphs not in the family. Wagner’s
conjecture (now the Robertson–Seymour Theorem) asserts that we can always achieve this by a
finite list:

3



Theorem 4 Every minor-closed class of graphs can be characterized by a finite family of ex-
cluded minors.

Clearly this theorem is a far-reaching generalization of Kuratowski’s Theorem.
For every minor-closed class K there is a unique minimal list of excluded minors characterizing

it: this consists of those graphs not in K for which every proper minor is in K. Theorem 4 asserts
that the set of minor-minimal graphs not in K is finite.

Yet another formulation of this result is that in every infinite set {G1, G2, . . . } of finite graphs
there are two graphs such that one is a minor of the other. This form puts it in the context of
well-quasi-ordering. A partially ordered set (P,≤) is well-quasi-ordered, if every infinite sequence
(x1, x2, . . . ) of its elements has two elements xi and xj such that i < j and xi ≤ xj . Theorem 4
says that the set of (isomorphism classes of) finite graphs, with the “minor” relation as partial
order, is well-quasi-ordered.

Perhaps the most important special case is embadability in a surface, which was proved
earlier [16]:

Corollary 5 For every closed compact surface there is a finite list of graphs such that a graph
G is embedable in this surface if and only if it does not contain any of these as a minor.

It is not hard to see that an analogous theorem holds where a finite list of graphs are excluded
as homeomorphic subgraphs (rather than minors).

3.3 Linkages

There is an important graph theoretic problem that plays a central role in the theory. Given
a graph and 2k nodes s1, . . . , sk, t1, . . . , tk, we may want to know whether there are k disjoint
paths P1, . . . , Pk so that Pi connects ui to vi. If such paths exist, we say that the ordered sets
(s1, . . . , sk) and (t1, . . . , tk) are linked. If every two ordered k-sets are linked, we say that the
graph is k-linked.

The linkage problem sounds very similar to Menger’s Theorem, which asserts that for two k-
element sets S and T , we have k disjoint paths, each connecting a node in S to a node in T if and
only if S and T cannot be separated by k − 1 nodes. The additional condition that we prescribe
which element of S should be connected to which element of T makes this problem much more
difficult. A complete characterization only exists for k = 2 (Thomassen [27], Seymour [25]). Let
us assume, to exclude some not-so-interesting complications, that the graph is 4-connected (i.e.,
it cannot be separated by 3 or fewer nodes).

Theorem 6 Let G be a 4-connected graph and s1, s2, t1, t2 four nodes of G. Then (s1, s2) and
(t1, t2) are linked unless G is planar and s1, s2, t1, t2 are on the boundary of the same face, in
this order.

It is interesting that the answer to a purely graph-theoretic question involves such a strong
topological property of the graph.
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The linkage problem is very important in many applications: it plays a crucial role in VLSI
design, and is closely related to the the Multicommodity Flow Problem.

Linkages are “linked” to graph minors in a number of ways. To illustrate the idea, let us
first consider a graph G that is k-linked. Let H be a graph with k edges. then we can find a
homeomorphic copy of H in G, by first mapping the nodes of H arbitrarily, specify the edges
through which the connecting paths should start, and then solve a linkage problem to map the
edges of H onto paths in G.

In the other direction, Robertson and Seymour [19] proved that if a graph is 2k-connected
and has a K3k minor, then the graph is k-linked. Extending these ideas, Bollobás and Thomason
[4] proved that every (22k)-connected graph is k-linked. For more on this connection, see [5].

3.4 About the proof

We have seen several examples showing that the notion of a minor-closed class is substantially
more general than the notion of graphs embedable in a given surface. Still, the proof of Theorem
7 goes through the proof for this special case, namely Corollary 5. Robertson and Seymour show
that every graph in a minor-closed class K (not containing all graphs) can be approximated by
a composition of graphs that are embedable in a surface which only depends on K. Graphs that
are embedable on this surface can be characterized by a finite number of excluded minors, and
from these, the finiteness of the minimal excluded minors for K can be proved.

The details are very difficult, however. The approximation of graphs in K by the class of
graphs embedable in some surface with bounded genus leads to an exciting and deep structure
theorem, which we’ll discuss in the next section. The finiteness of the list of excluded minors
for a given surface (Corollary 5) is needed in a stronger form, not only for graphs, but also for
hypergraphs.

How does topology come in at all? Theorem 2-LINK above may provide a hint. If we find
disjoint paths between certain pairs of nodes in a certain part of the graph, then we can use
these to construct appropriate minors. If not, then we know that this part of the graph is planar,
which could be the beginning of an embedding of the whole graph.

4 Structure theory

4.1 Constructive characterizations

Let us fix a graph H and consider the class KH of graphs not containing H as a minor. It is
clear that this class is in NP (to certify that a graph G is not in KH , just exhibit the way H is
produced from G as a minor). It follows from Graph Minor Theory that this class is in P, and
so also in co-NP. How can we certify that G ∈ KH , i.e., that G does not contain H as a minor?

As an illustration, let us quote Wagner’s characterization of graphs not containing the com-
plete graph K5 as a minor [29]. We need some definitions. Let G1 and G2 be two graphs, and let
Si ⊆ V (Gi) be a k-clique (a set of k mutually adjacent nodes). Let G be obtained by identifying
S1 with S2, and deleting some (possibly none, possibly all) edges between the nodes in S1 = S2.
We say that G is a k-clique-sum of G1 and G2.
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We denote by V8 the graph obtained from a cycle of length 8 by connecting opposite nodes.

Theorem 7 A graph G has no K5 minor if and only if it can be obtained by 0-, 1-, 2- and
3-clique-sum operations from planar graphs and V8.

This theorem can serve as a paradigm for answering such a question: we find a class that
does not contain a K5 minor for topological reasons (planar graphs), throw in some exceptions,
and describe gluing rules that preserve the property that there is no K5 minor. But this theorem
also warns us that such a certificate can become quite complicated, and in general it is probably
hopeless to explicitly describe the basic classes and gluing rules that would produce KH .

4.2 Approximate characterizations

The main idea behind a successful structure theory is to prove such a result in an approximate
sense. We start with an early result of this kind from [15]. We say that the graph G has tree-
width at most k is we can write G as the union of subgraphs Gi, which are indexed by the nodes
of a tree T , with the following properties.

(i) each Gi has at most k + 1 nodes;

(ii) if i, j, k ∈ V (T ) and j lies on the path between i and k, then V (Gi) ∩ V (Gk) ⊆ V (Gj).

Equivalently, G can be obtained by repeatedly taking clique-sum with graphs with at most
k + 1 nodes (Figure 3.

Figure 3: A graph with treewidth 2. The colored triangles indicate the subgraphs Gi.

Theorem 8 (a) For every planar graph H there is an integer k such that if a graph does not
contain H as a minor, then its tree-width is at most k.

(b) For every k > 0 there is a planar graph H such that no graph with tree-width at most k

contains H as a minor.

The main assertion here is that if a graph does not contain a given planar graph H as a
minor, then it has bounded tree-width, and therefore it can be constructed from bounded size
graphs, by gluing them together in a tree-like structure.
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In an analogous (but much more difficult) fashion, the following construction does not char-
acterize KH ; instead, it describes the approximate structure of every graph in KH .

We need a definition. Let C be a cycle. Select a family of arcs on C, so that each node is
contained in at most k of these arcs. For each arc A, create a new node vA. Connect vA to
some nodes on the arc A. Also connect any number of pairs (vA, vB) for which A and B have a
common node. We call this adding a fringe of width k to C.

Figure 4: A fringe of width 2 and a fringe of width 3.

For a positive integer k, construct the following class Lk of graphs:

(i) We start with a graph G embedded in a connected closed surface Σ with genus at most k

so that each face is homeomorphic with an open disc.

(ii) We select at most k faces of G and add a fringe of width at most k to each of them.

(iii) We create at most k new nodes and connect them to the other nodes arbitrarily.

(iv) We repeatedly construct the k-clique-sum of the graph we have with another graph
constructed using steps (i)–(iii) above.

It is clear that the class La is in NP: to certify that a graph is in La, just follow the construc-
tion. The assertion that this construction provides an “approximate good characterization” of
classes characterized by excluded minors is made precise by the following fundamental theorem
[20]:

Theorem 9 (a) For every graph H there exists an integer a > 0 such that KH ⊆ La;

(b) For every integer a > 0 there exists a graph H such that La ⊆ KH .

The second assertion is not hard, and it is included here just for completeness. The hard,
and useful, part is (a). We can strengthen it in various ways—for example, in (i) we may start
with a surface on which H does not embed.

5 Algorithmic consequences

Graph minor theory has an algorithmic consequence that is unprecedented in its generality [19].

Theorem 10 Every minor-closed property of graphs can be tested in polynomial time.

The algorithm that follows from the Graph Minor Theory is of complexity O(n3). The devil is
hidden in the big-O; first, the constants are huge and second, they depend on the list of excluded
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minors. While the finiteness of this list is guaranteed by Theorem 7, it is in general not easy to
find and, as we have remarked, it can be very large. So (unless the property that we want to
test is given by an explicit list of excluded minors), Theorem 10 only tells us the existence of a
polynomial time algorithm; it is a very unusual “pure existence theorem” for an algorithm.

The notion of treewidth introduced above has turned out to be quite useful in algorithm
design: there are many graph parameters that are difficult (NP-hard) to compute in general,
but which can be computed in polynomial time if the graph in question has bounded treewidth.
In view of Theorem 8, this means that if we restrict our attention to graphs not containing a
given planar graph as a minor, then we can solve many problems in polynomial time that are
NP-hard in general (see e.g. [2]).

Let the chromatic number serve as an example: this is defined as the minimum number
of colors needed to color the nodes of a graph G, so that adjacent nodes get different colors.
This fundamental parameter is difficult (NP-hard) to compute; but for graphs with bounded
treewidth we can use the following method.

Let G be a graph with treewidth at most k; we want to decide whether it is colorable with r

colors. We know that G can be glued together from pieces Gi with at most k + 1 nodes, which
are indexed by the nodes of a tree T , satisfying (TW1) above. Let us designate one of these Gi,
say G1, as the root region. Our algorithm will be recursive, and in fact do more: it will decide for
every r-coloring of the root region, whether or not the coloring can be extended to a (legitimate)
r-coloring of the whole graph.

Now the algorithm consists of two easy recursive steps:
(1) If the root region, as a node of T , has degree d > 1, we decompose the tree into its

“branches” relative to the root. These branches correspond to subgraphs of G, for which the
extension problem can be solved recursively. A coloring of the root can be extended to G if and
only if it can be extended to every branch.

(2) If the root region has degree d = 1 in T , we delete this node from T , and designate its
neighbor as the new root region. We solve the extension problem for this smaller graph, and it
is easy to check which colorings of the old root can be extended to the new root, and which of
these can be extended to the rest.

6 The decomposition paradigm

The excluded minor characterizations and the structure theorems discussed above can serve as
prototypical examples of a paradigm that leads to very difficult but important results.

Perhaps most dramatic of these is the recent resolution of the Strong Perfect Graph Conjec-
ture by Chudnovsky, Robertson, Seymour and Thomas [6]. Here again, the key to the proof is
a structure theory, which describes how every perfect graph can be glued together from certain
basic types. The minor-producing operation in this case is deleting a node.

The paradigm goes way beyond graph theory. A beautiful and rather early example is a pair of
difficult theorems on regular matroids. These are matroids that can be coordinatized by a totally
unimodular matrix. Interest in them comes from the fact that two standard matroids derived
from graphs, the cycle matroid and the cocycle matroid of a graph, are totally unimodular.
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The question of characterizing regular matroids is closely related to (but not quite equivalent
with) characterizing totally unimodular matrices. Tutte [28] gave a characterization in terms of
excluded minors. On the other hand, Seymour [26] gave a constructive description of regular
matroids: he showed that they can be glued together (in a way analogous to 1- and 2- and 3-
clique-sums) from cycle matroids and cocycle matroids of graphs, and one particular 10 element
matroid. Tutte’s result tells you why a matroid is not regular: it is because it contains, as a
minor, one of three particular matroids. Seymour’s result tells you why a matroid is regular:
because it can be built up in a specific way.

We should also mention the characterization of balanced matrices using the same paradigm
by Conforti, Cornuejols, Kapoor, Rao and Vuskovic [7, 8].

7 Research directions

7.1 Simpler proofs

It would be quite important to have simpler proofs with more explicit bounds. Warning: many of
us have tried, but only a few successes can be reported. For the generalization of Kuratowski’s
Theorem to other surfaces (Corollary 5 such proofs are known: Archdeacon and Huneke [1]
proved it (before the Robertson–Seymour proof of the general result) for nonorientable case, and
Mohar [11] gave a constructive proof for the orientable case.

7.2 Exact structural descriptions

If a class of graphs is defined in terms of excluded minors, then it is in co-NP (it is easy to certify
that a graph contains one of these). We also know that it is in P, and hence, also in NP; but
is there a direct way to certify that a graph is in this class? A structure theorem could serve
this purpose (an example would be Wagner’s Theorem 7), but such structure theorems are only
known in special cases, and in the general case, we only have the approximate structure theorem
9. (This should also warn us that such a result could be very difficult.)

7.3 Properties of minor-closed classes

It seems that there are many interesting known nd unknown general properties of minor-closed
classes; some follow from Theorem 9, others need (or should need) different techniques. To give
an example: an old result of Babai [3] asserts that if K is a minor-closed class of graphs that
does not contain all graphs, then graphs in K cannot have arbitrary automorphism groups.

We have seen above that if we restrict our attention to graphs that do not contain a given
planar graph as a minor, then many hard algorithmic problems become polynomially solvable.
There are also several examples of hard algorithmic problems (for example, a version of the
linkage problem in Section 3.3) that are polynomially solvable for planar graphs. In some cases,
Theorem 9 allows us to extend these to any minor-closed class of graphs; but there are other
such problems, where this extension does not seem to work.

9



7.4 3-dimensional graphs

One way of interpreting Theorem 9 is that graphs that don’t have all minors are essentially
2-dimensional, and vice versa. Is there a similar description of “3-dimensional” graphs? Is
there a general notion of “minor”, that would correspond to graphs whose structure we feel is
3-dimensional?
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[30] K. Wagner: Über eine Erweiterung des Satzes von Kuratowski, Deutsche Mathematik 2

(1937), 280–285.

[31] K. Wagner: Graphentheorie, B.J. Hochschultaschenbucher 248/248a, Mannheim (1970),
61.

11



 
 
 

 
 

2005 CURRENT EVENTS 
COMMITTEE 

 
David Eisenbud, Chair 
Alejandro Adem 
Dan Freed 
Susan Friedlander 
Edward Frenkel 
Stuart Geman 
Andrew Granville 
Matthew Miller 
John Morgan 
Hugo Rossi 
Michael Singer 
Richard Stanley 
Alan Weinstein 

Produced by Raquel Storti 
American Mathematical Society 


	Current Events in Mathematics
	Bryna Kra
	Robert J. McEliece
	Dusa McDuff 
	Jerrold E. Marsden  Shane D. Ross
	László Lovász
	Current Events Committee



